
The University of Saskatchewan
Department of Computer Science

Technical Report #2014-01

Insertion Operations on Deterministic Reversal-Bounded

Counter Machines ⇤

Joey Eremondi
Department of Information and Computing Sciences,

Utrecht University, P.O. Box 80.089 3508 TB Utrecht, The Netherlands
j.s.eremondi@students.uu.nl

Oscar H. Ibarra
Department of Computer Science,

University of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Ian McQuillan
Department of Computer Science, University of Saskatchewan

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

October 14, 2014

Abstract

Several insertion operations are studied applied to languages accepted by
one-way and two-way deterministic reversal-bounded multicounter machines.
These operations are defined by the ideals obtained from relations such as the
prefix, infix, su�x and outfix relations. The insertion of regular languages and
other languages into deterministic reversal-bounded multicounter languages is
also studied. The question of whether the resulting languages can always be ac-
cepted by deterministic machines with the same number of turns on the input
tape, the same number of counters, and reversals on the counters is investi-
gated. In addition, the question of whether they can always be accepted by
increasing either the number of input tape turns, counters, or counter reversals
is addressed. The results in this paper form a complete characterization based
on these parameters. Towards these new results, a new technique is created for
simultaneously showing a language cannot be accepted by both one-way deter-
ministic reversal-bounded multicounter machines, and by two-way deterministic
machines with one reversal-bounded counter.

⇤The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708. The research
of I. McQuillan was supported, in part, by the Natural Sciences and Engineering Research Council
of Canada.

1

1 Introduction

One-way deterministic multicounter machines are deterministic finite automata aug-
mented by a fixed number of counters, which can each be independently increased,
decreased or tested for zero. If there is a bound on the number of switches each
counter makes between increasing and decreasing, then the machine is reversal-
bounded [1, 7]. The family of languages accepted by one-way deterministic reversal-
bounded multicounter machines (denoted by DCM) is interesting as it is more general
than regular languages, but still has a decidable emptiness, infiniteness, equivalence,
inclusion, universe and disjointness problems [7]. Moreover, these problems remain
decidable if the machines operate with two-way input that is finite-crossing in the
sense that there is a fixed k such that the number of times the boundary between
any two adjacent input cells is crossed is at most k times [3].

Reversal-bounded counter machines (deterministic and nondeterministic) have
been extensively studied. Many generalizations have been investigated, and they
have found applications in areas such as verification of infinite-state systems, mem-
brane computing systems, Diophantine equations, etc.

In this paper, we study various insertion operations on deterministic reversal-
bounded multicounter languages. Common word and language relations are the
prefix, su�x, infix and outfix relations. For example, w is an infix of z, written
w i z, if z = xwy, for some x, y 2 ⌃⇤. Viewed as an operation on the first
component of the relation, i (w) = {z | w i z, z 2 ⌃⇤}, which is equal to the
set of all words with w as infix, which is ⌃⇤w⌃⇤. If we consider the inverse of this
relation, z �1

i w, if z = xwy, then viewing this as an operation, �1
i (z) = {w |

z �1
i w,w 2 ⌃⇤} = {w | w i z}, the set of all infixes of z. These can be extended

to operations on languages. Viewed in this way, we can define the prefix, su�x, infix
and outfix operations, along with their inverses on languages. This is the approach
taken in [9]. Using the more common notation of inf(L) for the set of infixes of L,
then inf�1(L) = ⌃⇤L⌃⇤, the set of all words having a word in L as an infix. This is
the same as what is often called the two-sided ideal, or the infix ideal as done in [9].
For the su�x operation, su↵(L) = (⌃⇤)�1L, and su↵�1(L) = ⌃⇤L, with the latter
being called the left ideal, or the su�x ideal. For prefix, pref(L) = L(⌃⇤)�1, and
pref�1(L) = L⌃⇤, the prefix ideal, or the right ideal. The inverse of each operation
defines a natural insertion operation.

We will examine the insertion operations defined by the inverse of the prefix, suf-
fix, infix, outfix and embedding relations, and their e↵ects on deterministic reversal-
bounded multicounter languages. We will also examine certain standard generaliza-
tions of these operations such as left and right concatenation with regular or more
general languages. In particular, if we start with a language that can be accepted
with a parameterized number of input tape turns, counters, and reversals on the
counters, is the result of the various insertion operations still accepted with the same
type of machines? And if not, can they always be accepted by increasing either the

2

turns on the input tape, counters, or reversals on the counters? Results in this paper
form a complete characterization in this regard, and are summarized in Section 5.
Surprisingly, even if we have languages accepted by deterministic 1-reversal bounded
machines with either one-way input and 2 counters, or 1 counter and 1 turn on the
input, then concatenating ⌃⇤ to the right can result in languages that can neither
be accepted by DCM machines (any number of reversal-bounded counters), nor by
two-way deterministic reversal-bounded 1-counter machines (2DCM(1), which have
no bound on input turns). This is in contrast to deterministic pushdown languages
which are closed under right concatenation with regular languages [5]. In addition,
concatenating ⌃⇤ to the left of a one-way 1-reversal-bounded one counter machine
can create languages that are neither in DCM nor 2DCM(1). Furthermore, as a con-
sequence of the results in this paper, it is evident that the right input end-marker
strictly increases the power for even one-way deterministic reversal-bounded multi-
counter languages when there are at least two counters. This is usually not the case
for various classes of one-way machines. To do this, a new mode of acceptance, by
final state without end-marker, is defined and studied.

Most non-closure results in this paper depend on a new technique developed
herein to simultaneously show languages are not in DCM and not in 2DCM(1). The
technique does not rely on any pumping arguments (like the recent paper [2] that
developed a technique to show languages are not in DCM) as the latter family even
contains non-semilinear languages.

2 Preliminaries

The set of non-negative integers is represented by N0, and positive integers by N.
For c 2 N0, let ⇡(c) be 0 if c = 0, and 1 otherwise.

We use standard notations for formal languages, referring the reader to [5, 6].
The empty word is denoted by �. We use ⌃ and � to represent finite alphabets,
with ⌃⇤ as the set of all words over ⌃ and ⌃+ = ⌃⇤ \ {�}. For a word w 2 ⌃⇤, if
w = a1 · · · an where a

i

2 ⌃, 1 i n, the length of w is denoted by |w| = n, and
the reversal of w is denoted by wR = a

n

· · · a1. The number of a’s, for a 2 ⌃, in w
is |w|

a

. Given a language L ✓ ⌃⇤, the complement of L, ⌃⇤ \ L is denoted by L.

Definition 1. For a language L ✓ ⌃⇤
, we define the prefix, inverse prefix, su�x,

inverse su�x, infix, inverse infix, outfix and inverse outfix operations, respectively:

pref(L) = {w | wx 2 L, x 2 ⌃⇤} pref�1(L) = {wx | w 2 L, x 2 ⌃⇤}
su↵(L) = {w | xw 2 L, x 2 ⌃⇤} su↵�1(L) = {xw | w 2 L, x 2 ⌃⇤}
inf(L) = {w | xwy 2 L, x, y 2 ⌃⇤} inf�1(L) = {xwy | w 2 L, x, y 2 ⌃⇤}
outf(L) = {xy | xwy 2 L,w 2 ⌃⇤} outf�1(L) = {xwy | xy 2 L,w 2 ⌃⇤}

We generalize the outfix relation to the notion of embedding [9]:

3

Definition 2. The m-embedding of a language L ✓ ⌃⇤
is: emb(L,m) = {w0 · · ·wm

|
w0x1 · · ·wm�1xmw

m

2 L, w
i

2 ⌃⇤, 0 i m,x
j

2 ⌃⇤, 1 j m}.
We define the inverse, emb�1(L,m) = {w0x1 · · ·wm�1xmw

m

| w0 · · ·wm

2
L,w

i

2 ⌃⇤, 0 i m,x
j

2 ⌃⇤, 1 j m}.

Note that outf(L) = emb(L, 1) and outf�1(L) = emb�1(L, 1).
A language L is called prefix-free if, for all words x, y 2 L, where x is a prefix of

y, then x = y.
A one-way k-counter machine is a tuple M = (k,Q,⌃, $, �, q0, F), where, re-

spectively, Q,⌃, $, q0, F are the finite set of states, the input alphabet, the right
end-marker, the initial state in Q, and the set of final states, which is a subset of Q.
The transition function � (defined as in [7] except with only a right end-marker since
these machines only use one-way inputs) is a mapping fromQ⇥(⌃[{$})⇥{0, 1}k into
Q ⇥ {S,R} ⇥ {�1, 0,+1}k, such that if �(q, a, c1, . . . , c

k

) contains (p, d, d1, . . . , d
k

)
and c

i

= 0 for some i, then d
i

� 0 to prevent negative values in any counter.
The symbols S are R indicate the direction of input tape head movement, ei-
ther stay or right respectively. The machine M is deterministic if � is a func-
tion. The machine M is non-exiting if there are no transitions defined on final
states. A configuration of M is a k+2-tuple (q, w$, c1, . . . , c

k

) representing the fact
that M is in state q, with w 2 ⌃⇤ still to read as input, and c1, . . . , c

k

2 N0

are the contents of the k counters. The derivation relation `
M

is defined be-
tween configurations, where (q, aw, c1, . . . , c

k

) `
M

(p, w0 , c1 + d1, . . . , c
k

+ d
k

), if
(p, d, d1, . . . , d

k

) 2 �(q, a,⇡(c1), . . . ,⇡(c
k

)) where d 2 {S,R} and w0 = aw if d = S,
and w0 = w if d = R. We let `⇤

M

be the reflexive, transitive closure of `
M

. And, for
m 2 N0, let `m

M

be the application of `
M

m times. A word w 2 ⌃⇤ is accepted by
M if (q0, w$, 0, . . . , 0) `⇤

M

(q, $, c1, . . . , c
k

), for some q 2 F , and c1, . . . , c
k

2 N0. The
language accepted by M , denoted by L(M), is the set of all words accepted by M .

The machine M is l-reversal bounded if, in every accepting computation, the
count on each counter alternates between increasing and decreasing at most l times.
We will sometimes refer to a multicounter machine as being in DCM(k, l), if it has
k l-reversal bounded counters.

We denote by NCM(k, l) the family of languages accepted by one-way nondeter-
ministic l-reversal-bounded k-counter machines. We denote by DCM(k, l) the family
of languages accepted by one-way deterministic l-reversal-bounded k-counter ma-
chines. The union of the language families are denoted by NCM =

S

k,l�0DCM(k, l)
and DCM =

S

k,l�0DCM(k, l).
Given a DCM machine M = (k,Q,⌃, $, �, q0, F), the language accepted by final

state without end-marker is the set of all words w such that

(q0, w$, 0, . . . , 0) `⇤
M

(q0, a$, c01, . . . , c
0
k

) `
M

(q, $, c1, . . . , c
k

),

for some q 2 F , q0 2 Q, a 2 ⌃, c
i

, c0
i

2 N0, 1 i k. Such a machine does not
“know” when it has reached the end-marker $. The state that the machine is in

4

when the last letter of input from ⌃ is consumed entirely determines acceptance
or rejection. It would be equivalent to require (q0, w, 0, . . . , 0) `⇤

M

(q,�, c1, . . . , c
k

),
for some q 2 F , but we continue to use $ for compatibility with the end-marker
definition. We use DCMNE(k, l) to denote the family of languages accepted by
these machines when they have k counters that are l-reversal-bounded. We define
DCMNE =

S

k,l�0DCMNE(k, l).
We denote by 2DCM(1) to be the family of languages accepted by two-way

deterministic finite automata (with both a left and right input tape end-marker)
augmented by one reversal-bounded counter, accepted by final state. A machine of
this form is said to be finite-crossing if there is a bound on the number of changes of
direction on the input tape, and t-crossing if it makes at most t changes of direction
on the input tape for every computation.

3 Closure for Insertion and Concatenation Operations

Closure under concatenation is di�cult for DCM languages because of the restric-
tion of being deterministic. However, we show special cases where closure results
can be obtained. Additionally, we study the necessity of an end-of-tape marker,
showing that it makes DCM languages strictly more powerful, but adding no power
to DCM(1, l) languages. To our knowledge, the necessity of the right end-marker for
one-way deterministic reversal-bounded multicounter machines has not been docu-
mented in the literature.

Lemma 1. For any l, DCM(1, l) = DCMNE(1, l).

Proof. By definition, DCMNE(1, l) ✓ DCM(1, l).
Consider M = (1, Q,⌃, $, �, q0, F) accepting L by final state. A machine M 0 will

be built such that the language accepted by M 0 by final state without end-marker
is equal to L(M).

We assume without loss of generality that � is defined for all inputs. Let |Q| = n.
For each state q 2 Q, we can define the language

L(q) = {ai | 9w such that (q, w$, i) `⇤
M

(q
f

, $, c), q
f

2 F, c 2 N0},

the set of counter values which leads to acceptance on end-of-tape marker $ from
state q. Since this language is in NCM, NCM languages are semilinear, and L(q)
is unary, we know L(q) is regular. Thus we can accept L(q) with a DFA, say
D(q) = (Q

D(q), {a}, �D(q), sD(q), FD(q)). We denote by D(q, i) the state of D(q)
reached after reading i letters of input.

Because these languages are unary, the structure of the DFAs are relatively
simple, and well-known [11]. Every unary DFA with m states is isomorphic to one
with states {0, . . . ,m� 1} where there exists some state k, and there is a transition
from from i to i + 1, for all 0 i < k (the “tail”), and there is a transition from

5

j to j + 1 for all k j < m � 1, plus a transition from m to k (the “loop”), and
no other transitions. Also, assume without loss of generality that there is always a
non-empty loop, which can be assumed by adding a loop without any final states.
Thus, D(q, i) is always defined for every i � 0.

Let t be one more than the maximum tail size of any D(q). Then t > 0. The
intuition for the construction of M 0 is as follows. The machine M 0 simulates M ,
and after reading w, if M has counter value c, M 0 has counter value c � t if c > t,
with t stored in the finite control. If c t, then M stores c in the finite control with
zero on the counter. This allows M 0 to know what counter value M would have
after reading a given word, but also to know when the counter value is less than t
(and the specific value less than t). In the finite control, M 0 simulates each D(q)
in parallel in such a way that the state D(q, i) is stored, for each q 2 Q, when the
counter of M is i. To do this, each time M increases the counter, from i to i + 1,
the state of each D(q) switches from D(q, i) to D(q, i+ 1). Each time M decreases
the counter from i to i� 1, the state of each D(q) changes deterministically “going
backwards in the loop” if i > t, and if i t, then the counter of M is stored in the
finite control, and thus each M(q) can tell when to switch deterministically from
loop to tail. Then, when in state q of M , M 0 can tell if the current counter value
would be accepted using the appropriate DFA D(q).

We now provide the construction in detail:
The machine M 0 has state set Q

M

0 = Q ⇥ {0, . . . , t} ⇥ Q
D(q1) ⇥ · · · ⇥ Q

D(qn),
where Q = {q1, . . . , qn} (and so q0 is also q

i

, for some i, 1 i n).
A state of M 0 is final if it is of the form (q

i

, c, d1, . . . , di, . . . , dn) where d
i

is final
in D(q

i

), for any 1 i n. The initial state is (q0, 0, D(q1, 0), . . . , D(q
n

, 0)).
For each state d 2 Q

D(qi) for each q
i

, we define next(d) = �
D(qi)(d, a). We define

prev(d) as the unique state d0 where �
D(qi)(d

0, a) = d and d0 is in the loop of D(q
i

),
defined only if d is in the loop.

If �
M

(q, b, 0) = (p, T, i), for some q, p 2 Q, b 2 ⌃, T 2 {S,R}, i 2 {0, 1}, we add
the following transition to �

M

0 :

1. �
M

0((q, 0, D(q1, 0), . . . , D(q
n

, 0)), b, 0) = (p, i,D(q1, i), . . . , D(q
n

, i), T, 0).

Also, if �
M

(q, b, 1) = (p, T, i), for some q, p 2 Q,T 2 {S,R}, i 2 {�1, 0, 1} we
add the following transition in �

M

0 for every s = (q, c, d1, . . . , dn):

2. �(s, b, 0) = ((p, c + i,D(q1, c + i), . . . , D(q
n

, c + i), T, 0) if either 0 < c < t or
c = t and i 2 {0,�1},

3. �(s, b, 1) = ((p, t, d1, . . . , dn)), T, 0), if c = t and i = 0,

4. �(s, b, x) = ((p, t, next(d1), . . . , next(dn)), T, i) for x 2 {0, 1}, if c = t and
i = 1,

5. �(s, b, 1) = ((p, t, prev(d1), . . . , prev(dn)), T, i) if c = t and i = �1.

6

We can see that for any counter value c and M -state q, next(D(q, c)) = D(q, c+
1). Additionally, if c > t, then c � 1 � t, meaning that D(q, c � 1) must be in the
loop of the unary DFA D(q). Thus, prev(D(q, c)) = D(q, c� 1).

Claim 1. Let w 2 ⌃⇤
. For all m 2 N0, if (q0, w = uv, 0) `m

M

(q, v, c) for some

u, v 2 ⌃⇤
, then

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), uv, 0) `m

M

0 ((q, t,D(q1, c), . . . , D(q
n

, c)), v, c� t),

when c > t, and

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), uv, 0) `m

M

0 ((q, c,D(q1, c), . . . , D(q
n

, c)), v, 0),

when c t.

Proof. We perform induction on m.
If m = 0 then q = q0, u = �, c = 0, c t, thus the second condition is true.
Consider m � 0, and assume the implication holds for m. We will show it holds

for m+ 1.
Suppose (q0, uv, 0) `m+1

M

(q, v, c). Then for some state p 2 Q, a 2 ⌃ [{�} ,
and c0 2 N0, we have (q0, uv, 0) `m

M

(p, av, c0) `1
M

(q, v, c). We know that c 2
{c0 � 1, c0, c0 + 1}.

Case: c > t, c0 > t. By our hypothesis, we have

((q0, 0, D(q1, 0), . . . , D(q
n

)), uv, 0) `m

M

0 ((p, t,D(q1, c
0), . . . , D(q

n

, c0)), av, c0 � t).

If c = c0 � 1, then we know that ((p, t,D(q1, c0), . . . , D(q
n

, c0)), av, c0 � t) `
M

0

((q, t,D(q1, c), . . . , D(q
n

, c)), v, c� t) by transition rule (5).
If c = c0, then we know that

((p, t,D(q1, c
0), . . . , D(q

n

, c0)), av, c0 � t) `
M

0 ((q, t,D(q1, c), . . . , D(q
n

, c)), v, c� t)

by transition rule (3).
If c = c0 + 1, then we know

((p, t,D(q1, c
0), . . . , D(q

n

, c0)), av, c0 � t) `
M

0 ((q, t,D(q1, c), . . . , D(q
n

, c)), v, c� t)

by transition rule (4).
Case: c > t, c0 t. Then we know that c0 = t and c = t+1. By our hypothesis,

we have:

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), uv, 0) `m

M

0 ((p, t,D(q1, t), . . . , D(q
n

, t)), av, 0),

a 2 ⌃ [{�}. So by transition rule (4) we have

((p, t,D(q1, t), . . . , D(q
n

, t)), av, 0) `
M

0 ((q, t,D(q1, t+ 1), . . . , D(q
n

, t+ 1)), v, 1),

7

which is valid since 1 = c� c0 = c� t.
Case: c t, c0 t. By our hypothesis we have

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), uv, 0) `m

M

0 ((p, c0, D(q1, c
0), . . . , D(q

n

, c0)), av, 0),

a 2 ⌃ [{�}.
If c = c0 � 1, c = c0 or c = c0 + 1, then the implication holds by transition rule

(2), unless c0 = 0, in which case it holds by transition rule (1).
Case: c t, c0 > t. Then we know c = t and c0 = t + 1. By our hypothesis

we have ((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), uv, 0) `m

M

0 ((p, t,D(q1, t + 1), . . . , D(q
n

, t +
1)), av, 1), for some a 2 ⌃ [{�}. The implication then holds from transition rule
(5), since c = t and t is one more than the largest tail, which means D(q

j

, t) is still
in the loop, for every j, 1 j n.

Thus we have shown that the implication true for M 0 in m + 1 steps, and is
therefore true for all m.

Claim 2. Let w 2 ⌃⇤
. For all m 2 N0, if

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), w = uv, 0) `m

M

0 ((q, d, q01, . . . , q
0
n

), v, e)

and c is the number of transitions used in the derivation where i = 1 in the con-

struction, minus the number of transitions used where i = �1 in the construction,

then the following are true:

• q0
j

= D(q
j

, c), for 1 j n,

• d = t, e = c� t when c > t,

• d = c, e = 0 when c t,

• (q0, w = uv, 0) `m

M

(q, v, c).

Proof. We perform induction on m.
If m = 0 then q = q0, u = �, c = 0 < t, d = e = 0, and the conclusion is true.
Suppose ((q0, 0, d(q1, 0), . . . , d(qn)), uv, 0) `m+1

M

0 ((q, d, q01, . . . , q
0
n

), v, e). Then

((q0, 0, d(q1, 0), . . . , d(qn)), uv, 0) `m

M

0 ((q0, d0, q001 , . . . , q
00
n

), av, e0)

`
M

((q, d, q01, . . . , q
0
n

), v, e),

a 2 ⌃ [{�} by some transition t. Let c0 be the number of transitions used in the
first m transitions of the derivation where i = 1, minus those where i = �1. Then,
by the hypothesis,

• ((q0, 0, d(q1, 0), . . . , d(qn)), uv, 0) `m

M

0 ((q0, d0, D(q1, c0), . . . , D(q
n

, c0), av, e0),

• d0 = t, e0 = c0 � t, when c0 > t, and

8

• d0 = c0, e0 = 0, when c0 t and

• (q0, uv, 0) `m

M

(q0, av, c0).

Suppose that c0 > t. Then

((q0, 0, d(q1, 0), . . . , d(qn)), uv, 0) `m

M

0 ((q0, t,D(q1, c
0), . . . , D(q

n

, c0)), av, c0 � t)

`
M

((q, d, q01, . . . , q
0
n

), v, e),

a 2 ⌃ [{�} by some transition t. If t is created from a transition where i = 1, this
must be of type (4), and let c = c0 +1 then q0

j

= D(q
j

, c), 1 j n, d = t, e = c� t,
and thus (q0, uv, 0) `⇤

M

(q, v, c). If t is created from a transition where i = 0, this
must be of type (4), c = c0, q0

j

= D(q
j

, c), 1 j n, d = t, e = c � t, and thus
(q0, uv, 0) `⇤

M

(q, v, c). If t is created from a transition where i = �1, then t must
be of type (5), and let c = c0 � 1 then c � t, q0

j

= D(q
j

, c), 1 j n, d = t, e = c� t
(and so d = c and e = 0 if c = t), and thus (q0, uv, 0) `⇤

M

(q, v, c).
If c0 t, the proof is also similar.

As a result of this claim, we can see that, (q0, w$, 0) `⇤
M

(q, $, c), where (q, $, c)
is the first configuration reaching $, if and only if

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), w, 0) `⇤
M

0 ((q, t,D(q1, c), . . . , D(q
n

, c)),�, c� t)

if c > t and

((q0, 0, D(q1, 0), . . . , D(q
n

, 0)), w, 0) `⇤
M

0 ((q, c,D(q1, c), . . . , D(q
n

, c)),�, 0)

if c t. Then, M accepts w if and only if ac 2 D(q), by our definition of D(q).
And M 0 accepts w if and only if D(q, c) is final in D(q), which again happens if and
only if ac 2 D(q). So M accepts w by final state if and only if M 0 accepts w by final
state without end-marker.

We will extend these closure results with a lemma about prefix-free DCMNE

languages. It was shown in [4] that a regular language is prefix-free if and only if
there is a non-exiting DFA (defined just like with counter machines above, where
there are no transitions defined on final states) accepting the language.

Lemma 2. Let L 2 DCMNE. Then L is prefix-free if and only if there exists a DCM-

machine M accepting L by final state without end-marker which is non-exiting.

Proof. Let L 2 DCMNE, with M a machine accepting L by final state without
end-marker.

(=)) Suppose L is prefix-free. Construct M 0 from M such that all transitions
defined on final states are removed, and so M 0 is not non-exiting. Then L(M 0) ✓
L(M) since all transitions of M 0 are in M . Let q

f

be a final state with outgoing
transitions in M . For every w leading to state q

f

in M , wx is not accepted for any x.

9

Then, we can accept w 2 M 0 since M accepts L by final state without end-marker,
thus removing transitions of q

f

that will not disrupt the acceptance of w in M 0.
Thus L(M) ✓ L(M 0) as well.

((=) Suppose M is non-exiting accepting L by final state without end-marker.
Consider w 2 L. Then after reading w, there are no transitions to follow, so wx is
not accepted for any x. Thus L is prefix-free.

From this, we obtain a special case where DCM is closed under concatenation,
if the first language can be both accepted by final state without end-marker, and
is prefix-free. The construction considers a non-exiting machine accepting L1 by
final state without end-marker, where transitions into its final state are replaced by
transitions into the initial state of the machine accepting L2.

Proposition 1. Let L1 2 DCMNE(k, l), L2 2 DCM(k0, l0), with L1 prefix-free. Then

L1L2 2 DCM(k + k0,max(l, l0)).

Proof. Our construction is simple. Consider non-exiting M1 accepting L1 by final
state without end-marker, and M2 accepting L2. We form M 0 where L(M 0) = L1L2.
Indeed,M 0 has the states and transitions fromM1,M2 combined, with the start state
of M1 as its start state. Any transition into an accepting state of M1 is replaced
by an equivalent transition into the starting state of M2. The accepting states are
the accepting states of M2. The machine has separate counters for the counters of
M1 and M2, each of which performs the same reversals they would in their original
machine.

If w 2 L1 and x 2 L2, then wx 2 L(M 0). Since M1 accepts without end-marker,
we know reading w in M1 immediately leads to an accepting state in M1, even
without reading $. So, in M 0, we know that reading w will lead to the start state
of M2. Reading x from the start of M2 leads to an accepting state, since x 2 L2.
Thus reading x from the start of M2 in M 0 leads to acceptance.

If y 2 L(M 0), then reading y lead to some accepting state of M2. M 0 starts
in the start of M1, so the only path to an accepting state is through the start of
M2. Thus there is some division of y into w, x where reading w in M1 leads to
acceptance (because it leads to the start state of M2 in M 0), and reading x in M2

leads to acceptance, because we got to an accepting state in M 0. Thus y 2 L1L2.

If we remove the condition that L1 is prefix-free however, the proposition is no
longer true, as we will see in the next section that even the regular language ⌃⇤

(which is in DCMNE(0, 0)) concatenated with a DCM language produces a language
outside DCM.

Corollary 1. Let L 2 DCM(k, l), R 2 REG, where R is prefix-free. Then RL 2
DCM(k, l).

10

In contrast to left concatenation of a regular language with a DCM language
(Corollary 1), where it is required that R be prefix-free (the regular language is
always in DCMNE), for right concatenation, it is only required that it be a DCMNE

language. We will see in the next section that this is not true if the restriction that
L accepts by final state without end-marker is removed.

Proposition 2. Let L 2 DCMNE(k, l), R 2 REG. Then LR 2 DCMNE(k, l). Also,

pref�1(L) 2 DCMNE(k, l).

Proof. Let M1 = (k,Q1,⌃, $, �1, q1, F1) be a DCMmachine accepting L by final state
without end-marker. Let M2 = (Q2,⌃, �2, q2, F2) be a DFA accepting R. A DCM
machine M 0 will be built that will accept LR by final state without end-marker.
Assume without loss of generality that M1 reads all the way to the end of every
input.

Intuitively, M 0 = (k,Q0,⌃, $, �0, q0, F 0) will simulate M1 while also storing a
subset of Q2 in the second component of the state. Every time it reaches a final
state of M1, it places the initial state of M2 in the second component. And, then it
continues to simulate M1, while in parallel simulating the DFA M2 on every state
in the second component in parallel.

Formally, Q0 = Q1 ⇥ 2Q2 , q0 = (q1, ;) if q1 /2 F1 and q0 = (q1, {q2}) oth-
erwise, F 0 = {(q,X) | q 2 Q,X \ F2 6= ;} and �0 is defined as follows: For
every transition, �1(q, a, x) = (p, T, i1, . . . , i

k

), p, q 2 Q, a 2 ⌃, x 2 {0, 1}, T 2
{S,R}, i

j

2 {�1, 0, 1}, 1 j k, introduce �0((q, Y), a, x) = ((p, Z), T, i1, . . . , i
k

),
for all Y 2 2Q2 , where

1. Z = Y if T = S and p /2 F1,

2. Z = �2(Y, a) if T = R and p /2 F1,

3. Z = Y [{q2} if T = S and p 2 F1,

4. Z = �2(Y, a) [{q2} if T = R and p 2 F1.

Claim 3. L(M1)L(M2) ✓ L(M 0).

Proof. Let uv 2 ⌃⇤, where u 2 L(M1), v 2 L(M2). Then there is a derivation
(p1, u1, i1(1), . . . , i

k

(1)) `
M

· · · `
M

(p
n

, u
n

, i1(n), . . . , i
k

(n)) where p1 = q1, u1 =
uv, i1(1) = · · · = i

k

(1) = 0, p
n

2 F1, un = v, and the last transition applied reads a
letter (moves right) since M1 accepts by final state without end-marker. Further-
more, since M1 reads every input, (p

n

, u
n

, i1(n), . . . , i
k

(n)) `⇤
M1

(p0,�, i1, . . . , i
k

) for
some p0 2 Q1, ij 2 N0, 1 j k. So by the construction ((q1, Y1), uv, 0, . . . , 0) `⇤

M

0

((p
n

, Y
n

), v, i1(n), . . . , i
k

(n)), either this sequence is of length 0, or longer where the
last transition applied reads a letter, and since p

n

2 F1, the last transition applied
was of type 4 above. In both cases, q2 2 Y

n

. In addition, it must be the case that

((p
n

, Y
n

), v, i1(n), . . . , i
k

(n)) `⇤
M

0 ((p0, Y 0),�, i1, . . . , i
k

),

11

and that �̂(q2, v) 2 Y 0 since every transition applied to M1 while reading v that
consumes an input letter, also changes state via that letter according to the DFA
M2. Thus, there is a final state from F2 in Y 0 causing M 0 to also accept.

Claim 4. L(M 0) ✓ L(M1)L(M2)

Proof. Let w 2 L(M 0). Then,

((q1, Y1), w1, i1(1), . . . , i
k

(1)) `
M

0 · · · `
M

0 ((p
n

, Y
n

), w
n

, i1(n), . . . , i
k

(n)),

where w1 = w, q0 = (q1, Y1), i1(1) = · · · = i
k

(1) = 0, Y
n

\ F2 6= ;, w
n

= �. Let q
f

be
some state in F2 \ Y

n

. Then, by the construction, there exists some j, 1 j n
such that p

j

2 F1, q2 2 Y
j

, and for every transition from the jth configuration to the
last one, while reading w

j

, the sets Y
j

, . . . , Y
n

consecutively stay the same on a stay
transition, and on a right transition that consumes the next input letter of w

j

, puts

the state �̂2(q2, w0
j

), for each consecutive prefix of w0
j

of w
j

in the sets Y
j

, . . . , Y
n

.

Hence, w
j

2 R, and since p
j

2 F1, it must be that ww�1
j

2 L(M1).

Hence, LR 2 DCMNE(k, l).

As a corollary, we get that DCM(1, l) is closed under right concatenation with
regular languages. This corollary could also be inferred from the proof in [5] that
deterministic context-free languages are closed under concatenation with regular
languages.

Corollary 2. Let L 2 DCM(1, l) and R 2 REG. Then LR 2 DCM(1, l).

Corollary 3. If L 2 DCM(1, l), then pref�1(L) 2 DCM(1, l).

4 Relating (Un)Decidable Properties to
Non-closure Properties

In this section, we demonstrate a technique that proves non-closure properties using
(un)decidable properties. In particular, we use this technique to prove that some
languages are not accepted by 2DCM(1)s (i.e., two-way DFAs with one reversal-
bounded counter). Since 2DCM(1)s have two-way input and a reversal-bounded
counter, it does not seem easy to derive “pumping” lemmas for these machines.
2DCM(1)s are quite powerful, e.g., although the Parikh map of the language ac-
cepted by any finite-crossing 2NCM (hence by any NCM) is semilinear [7], 2DCM(1)s
can accept non-semilinear languages. For example, L1 = {aibk | i, k � 2, i divides k}
can be accepted by a 2DCM(1) whose counter makes only one reversal. However, it
is known that L2 = {aibjck | i, j, k � 2, k = ij} cannot be accepted by a 2DCM(1)
[8].

We will need the following result (the proof for DCMs is in [7]; the proof for
2DCM(1)s is in [8]):

12

Theorem 1.

1. The class of languages accepted by DCMs is closed under Boolean operations.

Moreover, the emptiness problem is decidable.

2. The class of languages accepted by 2DCM(1)s is closed under Boolean opera-

tions. Moreover, the emptiness problem is decidable.

We note that the emptiness problem for 2DCM(2)s, even when restricted to machines
accepting only letter-bounded languages (i.e., subsets of a⇤1 · · · a⇤

k

for some k � 1 and
distinct symbols a1, . . . , a

k

) is undecidable [7].
We will show that there is a language L 2 DCM(1, 1) such that inf�1(L) is not

in DCM [2DCM(1).
The proof uses the fact that that there is a recursively enumerable language Lre ✓

N0 that is not recursive (i.e., not decidable) which is accepted by a detereminstic
2-counter machine [10]. Thus, the machine when started with n 2 N0 in the first
counter and zero in the second counter, eventually halts (i.e., accepts n 2 Lre).

A close look at the contructions in [10] of the 2-counter machine, where ini-
tially one counter has some value d1 and the other counter is zero, reveals that the
counters behave in a regular pattern. The 2-counter machine operates in phases
in the following way. The machine’s operation can be divided into phases, where
each phase starts with one of the counters equal to some positive integer d

i

and the
other counter equal to 0. During the phase, the positive counter decreases, while
the other counter increases. The phase ends with the first counter having value 0
and the other counter having value d

i+1. Then in the next phase the modes of the
counters are interchanged. Thus, a sequence of configurations corresponding to the
phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the q
i

’s are states, with q1 = q
s

(the initial state), and d1, d2, d3, . . . are
positive integers. Note that in going from state q

i

in phase i to state q
i+1 in phase

i+ 1, the 2-counter machine goes through intermediate states.
For each i, there are 5 cases for the value of d

i+1 in terms of d
i

: d
i+1 =

d
i

, 2d
i

, 3d
i

, d
i

/2, d
i

/3. (The division operation is done only if the number is di-
visible by 2 or 3, respectively.) The case is determined by q

i

. Thus, we can define a
mapping h such if q

i

is the state at the start of phase i, d
i+1 = h(q

i

)d
i

(where h(q
i

)
is 1, 2, 3, 1/2, 1/3).

Note that the second component of the configuration refers to the value of c1
(first counter), while the third component refers to the value of c2 (second counter).

Let T be a 2-counter machine accepting a recursively enumberable set Lre that is
not recursive. We assume that q1 = q

s

is the initial state, which is never re-entered,
and if T halts, it does so in a unique state q

h

. Let T ’s state set be Q, and 1 be a
new symbol.

13

In what follows, ↵ is any sequence of the form I1I2 · · · I2m (thus we assume that
the length is even), where I

i

= q1k for some q 2 Q and k � 1, represents a possible
configuration of T at the beginning of phase i, where q is the state and k is the value
of counter c1 (resp., c2) if i is odd (resp., even).

Define L0 to be the set of all strings ↵ such that

1. ↵ = #I1#I2# · · ·#I2m#;

2. m � 1;

3. for 1 j 2m� 1, I
j

) I
j+1, i.e., if T begins in configuration I

j

, then after
one phase, T is in configuration I

j+1 (i.e., I
j+1 is a valid successor of I

j

);

Lemma 3. L0 is not in DCM [2DCM(1).

Proof. Suppose L0 is accepted by a DCM (resp., 2DCM(1)). The following is an
algorithm to decide, given any n, whether n is in Lre.

1. Let R = #q
s

1n((#Q1+#Q1+))⇤#q
h

1+#. Clearly R is regular.

2. Then L0 = L0 \R is also in DCM (resp., 2DCM(1)) by Theorem 1.

3. Check if L0 is empty. This is possible, since emptiness of DCM (respectively,
2DCM(1)) is decidable by Theorem 1.

The claim follows, since L0 is empty if and only if n is not in Lre.

4.1 Non-closure Under Inverse Infix

Theorem 2. There is a language L 2 DCM(1, 1) such that inf�1(L) is not in

DCM [2DCM(1).

Proof. Let T be a 2-counter machine. Let L = {#q1m#p1n# | T when started
in state q when one counter has value m and the other counter has value 0, does
not reach the configuration in the next phase where the counter become zero, the
other counter has value n, and the state is p}. Thus, L = {I#I 0 | I and I 0 are
configurations of T , and I 0 is not a valid successor of I}. Clearly, L can be accepted
by a DCM(1, 1).

Let ⌃ be the alphabet over which L is defined. We claim that L1 = inf�1(L) is
not in DCM[2DCM(1). Otherwise, by Theorem 1, L1 (the complement of L1) is also
in DCM[2DCM(1), and L1\ (#Q1+#Q1+)+# = L0 would be in DCM[2DCM(1).
This contradicts Lemma 3.

14

4.2 Non-closure Under Inverse Prefix

Theorem 3. There exists a language L such that L 2 DCM(2, 1) and L 2 2DCM(1)
(which makes only 1 turn on the input and 1 reversal on the counter) such that

pref�1(L) = L⌃⇤ 62 DCM [2DCM(1).

Proof. Consider L = {#w# | w 2 {a, b,#}⇤ , |w|
a

6= |w|
b

}. Clearly, L can be
accepted by a DCM(2,1) and by a 2DCM(1) which makes only 1 turn on the input
and 1 reversal on the counter.

Suppose to the contrary that pref�1(L) 2 DCM [2DCM(1). Then, L0 2 DCM [
2DCM(1), where

L0 = pref�1(L) \ (# {a, b,#}⇤#) = {#w1 · · ·#w
n

| 9i. |w1 · · ·wi

|
a

6= |w1 · · ·wi

|
b

}.

We know that DCM and 2DCM(1) are closed under complement. So we can see
that L00 2 DCM [2DCM(1), where we define

L00 = L0 \ (#a⇤b⇤)+# =
n

#ak1bk1# · · ·#akmbkm# | m > 0
o

.

We will show that L00 is not in DCM[2DCM(1). Suppose L00 is in DCM[2DCM(1).
Define two languages:

• L1 = {#1k1#1k1# · · ·#1km#1km# | m � 1, k
i

� 1},

• L2 = {#1k0#1k1#1k1# · · ·#1km�1#1km�1#1km# | m � 1, k
i

� 1}.

Note that L1 and L2 are similar. In L1, the odd-even pairs of 1’s are the same, but
in L2, the even-odd pairs of 1’s are the same. Clearly, if M 00 in DCM [2DCM(1)
accepts L00, then we can construct (from M 00) M1 and M2 in DCM [2DCM(1) to
accept L1 and L2, respectively.

We now refer to the language L0 that was shown not to be in DCM [2DCM(1)
in Lemma 3. We will construct a DCM (resp., 2DCM(1)) to accept L0, which would
be a contradiction. Define the languages:

• L
odd

= {#I1#I2# · · ·#I2m | m � 1, I1, · · · , I2m are configurations of the 2-
counter machine T , for odd i, I

i+1 is a valid successor of I
i

}.

• L
even

= {#I1#I2# · · ·#I2m | m � 1, I1, · · · , I2m are configurations of the
2-counter machine T , for even i, I

i+1 is a valid successor of I
i

}.

Clearly, L0 = L
odd

\ L
even

. Since DCM (rersp., 2DCM(1)) is closed under inter-
section, we need only to construct two DCMs (resp., 2DCM(1)s) M

odd

and M
even

accepting L
odd

and L
even

, respectively. We will only describe the construction of
M

odd

, the construction of M
even

being similar.

Case: L00 not in DCM.

15

First consider the case of DCM. We will construct two machines: a DCM A and a
DFA B such that L(M

odd

) = L(A) \ L(B).
Let L

A

= {#I1#I2# · · ·#I2m | m � 1, I1, · · · , I2m are configurations of the 2-
counter machine T , for odd i, if I

i

= q
i

1di , then d
i+1 = h(q

i

)d
i

}. We can construct a
DCM A to accept L

A

by simulating the DCM M1. For example, suppose h(q
i

) = 3.
Then A simulates M1 but whenever M1 moves its input head one cell, A moves its
input head 3 cells. If h(q

i

) = 1/2, then when M1 moves its head 2 cells, A moves
its input head 1 cell. (Note that A does not use the 2-counter machine T .)

Now Let L
B

= {#I1#I2# · · ·#I2m | m � 1, I1, · · · , I2m are configurations of
the 2-counter machine, for odd i, if I

i

= q
i

1di , then T in configuration I
i

ends phase
i in state q

i+1}. Clearly, a DFA B can accept L
B

by simulating T for each odd i
starting in state q

i

on 1di without using a counter, and checking that the phase ends
in state q

i+1. (Note that the DCM A already checks the “correctness” of d
i+1.)

We can then construct from A and B a DCM M
odd

such that L(M
odd

) = L(A)\
L(B). In a similar way, we can construct M

even

.

Case: L00 not in 2DCM(1).
The case 2DCM(1) can be shown similarly. For this case, the machines M

odd

and
M

even

are 2DCM(1)s, and machine A is a 2DCM(1), but machine B is still a DFA.

From this, we can immediately get the result that the right end-marker is nec-
essary for deterministic counter machines when there are at least two 1-reversal-
bounded counters. In fact, without it, no amount of reversal-bounded counters with
a deterministic machine could accept even some languages that can be accepted
with two 1-reversal-bounded counters could with the end-marker.

Corollary 4. There are languages in DCM(2, 1) that are not in DCMNE.

Proof. Since DCMNE is closed under concatenation with ⌃⇤, it follows that pref�1(L)
from Theorem 3 is not in DCMNE.

4.3 Non-closure for Inverse Su�x, Outfix and Embedding

Proposition 3. There exists a language in L 2 DCM(1, 1) such that su↵�1(L) 62
DCM and su↵�1(L) 62 2DCM(1).

Proof. Let L be as in Theorem 2. We know DCM(1, 1) is closed under pref�1 by
Corollary 3, so pref�1(L) 2 DCM(1, 1). Suppose su↵�1(pref�1(L)) 2 DCM. This
implies that inf�1(L) 2 DCM, but we showed this language was not in DCM. Thus
we have a contradiction. A similar contradiction can be reached when we assume
su↵�1(pref�1(L)) 2 2DCM(1).

Corollary 5. There exists L 2 DCM(1, 1) and regular languages R such that RL /2
DCM and RL /2 2DCM(1).

16

This implies that without the prefix-free condition on L1 in Proposition 1, con-
catenation closure does not follow.

Corollary 6. There exists L1 2 DCMNE(0, 0) (regular), and L2 2 DCM(1, 1), where
L1L2 /2 DCM and L1L2 /2 2DCM(1).

The result also holds for inverse outfix.

Proposition 4. There exists a language L 2 DCM(1, 1) such that outf�1(L) 62 DCM
and outf�1(L) 62 2DCM(1).

Proof. Consider L ✓ ⌃⇤ where L 2 DCM(1, 1), su↵�1(L) 62 DCM and su↵�1(L) 62
2DCM(1). The existence of such a language is guaranteed by Proposition 3. Let
� = ⌃ [{%}.

Suppose outf�1(L) 2 DCM. Then L0 2 DCM, where L0 = outf�1(L) \%⌃⇤. We
can see L0 = {%yx | x 2 L, y 2 ⌃⇤}, since the language we intersected with ensures
that the section is always added to the beginning of a word in L.

However, we also have %�1L0 2 DCM because DCM is clearly closed under left
quotient with a fixed word. We can see %�1L0 = {yx | x 2 L, y 2 ⌃⇤}. This is just
su↵�1(L), so su↵�1(L) 2 DCM, a contradiction.

The result is the same for 2DCM(1), relying on the closure of the family under
left quotient with a fixed word, which is clear.

Corollary 7. Let m 2 N. There exists a language L 2 DCM(1, 1) such that

emb�1(m,L) 62 DCM and emb�1(m,L) 62 2DCM(1).

This is similar to Proposition 4 except starting with #m�1, then

emb�1(#m�1L) \ (#%)m�1L = {(#%)m�1yx | x 2 L, y 2 ⌃⇤},

and so L0 2 DCM.

5 Summary of Results

Assume R 2 REG, LDCM 2 DCM, and LDCMNE 2 DCMNE.

The question: For all L 2 DCM(k, l):

17

Operation is Op(L) 2 DCM(k, l)? is Op(L) 2 DCM?
pref�1(L) Yes 8l,DCM(1, l) Yes for DCM(1, l)

No 8k � 2, l � 1 Yes L 2 DCMNE

No otherwise, 8k � 2, l � 1
su↵�1(L) No 8k, l � 1 No 8k, l � 1
inf�1(L) No 8k, l � 1 No 8k, l � 1
outf�1(L) No 8k, l � 1 No 8k, l � 1
LR Yes 8DCM(1, l) Yes 8l,DCM(1, l)

Yes if L 2 DCMNE Yes if L 2 DCMNE

No otherwise, 8k � 2, l � 1 No otherwise, 8k � 2, l � 1
RL Yes if R prefix-free Yes if R prefix-free

No otherwise, 8k, l � 1 No otherwise, 8k, l � 1
LDCML No 8k, l � 1 No 8k, l � 1
LDCMNEL No 8k, l � 1 Yes if LDCMNE prefix-free

No 8k, l � 1 if not prefix-free

Table 1: Summary of results for DCM.

Also, for 2DCM(1), the results are summarized as follows:

• There exists L 2 DCM(1, 1) (one-way), such that su↵�1(L) /2 2DCM(1).

• There exists L 2 DCM(1, 1) (one-way) , R regular, such that RL /2 2DCM(1).

• There exists L 2 DCM(1, 1) (one-way), such that outf�1(L) /2 2DCM(1).

• There exists L 2 DCM(1, 1) (one-way), such that inf�1(L) /2 2DCM(1).

• There exists L 2 2DCM(1) with 1 input turn and 1 counter reversal, such that
pref�1(L) /2 2DCM(1).

• There exists L 2 2DCM(1) with 1 input turn and 1 counter reversal, R regular,
such that LR /2 2DCM(1).

This resolves every open question studied, optimally, in terms of the number of
counters, reversals on counters, and reversals on the input tape.

References

[1] Brenda S. Baker and Ronald V. Book. Reversal-bounded multipushdown ma-
chines. Journal of Computer and System Sciences, 8(3):315–332, 1974.

[2] Ehsan Chiniforooshan, Mark Daley, Oscar H. Ibarra, Lila Kari, and Shinno-
suke Seki. One-reversal counter machines and multihead automata: Revisited.
Theoretical Computer Science, 454:81–87, 2012.

18

[3] Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for
finite-turn multicounter machines. Journal of Computer and System Sciences,
22(2):220–229, 1981.

[4] YS Han and Derick Wood. The generalization of generalized automata: Ex-
pression automata. International Journal of Foundations of Computer Science,
16(03):499–510, 2005.

[5] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley
series in computer science. Addison-Wesley Pub. Co., 1978.

[6] J E Hopcroft and J D Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, Reading, MA, 1979.

[7] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25(1):116–133, 1978.

[8] Oscar H. Ibarra, Tao Jiang, Nicholas Tran, and Hui Wang. New decidability
results concerning two-way counter machines. SIAM J. Comput., 23(1):123–
137, 1995.

[9] H Jürgensen, L Kari, and G Thierrin. Morphisms preserving densities. Inter-

national Journal of Computer Mathematics, 78:165–189, 2001.

[10] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other
topics in theory of Turing Machines. Annals of Mathematics, 74(3):pp. 437–455,
1961.

[11] Cyril Nicaud. Average state complexity of operations on unary automata.
In Miros law Kuty lowski, Leszek Pacholski, and Tomasz Wierzbicki, editors,
Mathematical Foundations of Computer Science 1999, volume 1672 of Lecture
Notes in Computer Science, pages 231–240. Springer Berlin Heidelberg, 1999.

19

