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Stiffness analysis of cardiac electrophysiological models
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Abstract

The electrophysiology in a cardiac cell can be modelled as a system of ordinary differential equations.
The efficient solution of these systems is important because they must be solved many times as sub-
problems of tissue- or organ-level simulations of cardiac electrophysiology. The wide variety of existing
cardiac cell models encompasses many different properties, including the complexity of the model and
the degree of stiffness. Accordingly, no single numerical method can be expected to be the most efficient
for every model. In this report, we perform a detailed study of the stiffness properties of a range of
cardiac cell models and discuss the implications for their numerical solution. The analysis of the data
generated allows us to see the impact of stiffness on the performance of several numerical methods.

1 Introduction

The electrophysiological behaviour in myocardial tissue can be modelled by means of differential equations,
often as a combination of ordinary and partial differential equations. Ionic currents at the myocardial cell
level are described by a model consisting of ordinary differential equations (ODEs). These ionic currents
are coupled via a model consisting of partial differential equations (PDEs) to describe the flow of electricity
across the heart. A PDE model, such as the bidomain model, coupled with an ionic model can be used to
simulate the electrical activity in the heart. For a thorough introduction, see [42] or [50].

Coupled ODE/PDE models are often solved separately via an algorithm called operator splitting. In this
algorithm, the solution process alternates between solving the ODEs and the PDEs separately. In this
context, the solution of each system is an important sub-problem of the overall solution process, each posing
challenges to solving the overall problem efficiently. One such challenge is that the ionic model is usually a
stiff, non-linear set of ODEs that must be solved for each node in the simulation. Moreover, a fine spatial
discretization is required to produce useful data [54], and so another challenge is the magnitude of the system
required for a realistic simulation. Inefficiencies in solving the ionic model, for example, are dramatically
magnified as simulations become larger. The use of reduced, computationally inexpensive ionic models
(e.g., [52]) illustrate the difficulty in efficiently performing simulations. In this study, we generate stiffness
data and perform a systematic stiffness analysis of 37 verified ionic cell models from the CellML model
repository [27] and show how this analysis can lead to application or design of appropriate methods for their
efficient numerical solution.
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A wide range of ionic models exists. Most models are based upon the Hodgkin–Huxley (HH) model for the
giant squid axon [21]. The FitzHugh–Nagumo (FHN) model [17, 33], a simplification of the HH model with
two ODEs, is often used as an inexpensive ionic model, albeit usually in a form modified to more accurately
model cardiac action potentials; see, e.g., [4, 25, 43, 53]. Modern models, on the other hand, usually add
detail to the HH model or subsequent models; e.g., the model of Iyer et al. (2004) of human left-ventricular
epicardial myocytes consists of 67 ODEs. There is also variety in the type of cardiac cell modelled, including
models of cells in the atria, ventricles, sinoatrial node, and Purkinje fibres, as well as in the species being
modelled, e.g., human, canine, rabbit, etc.

The wide variety of ionic models has significant implications for efficiently obtaining their numerical solution.
The simplest models, such as FHN, are non-stiff [50]. In such a case, the use of a non-stiff numerical method is
the most appropriate to obtain a solution efficiently. Cell models more detailed than FHN tend to be stiff and
require the use of a stiff numerical method to obtain a solution efficiently [50]. However, stiffness is a subtle
effect and challenging to definitively characterize. The distinction between stiff and non-stiff models is not
clear cut in general; it depends on aspects such as the dichotomy of the time scales involved and the accuracy
required of the approximate solution. We find there is a considerable difference in the degree of stiffness
across the range of ionic models even for typical accuracy requirements. For example, [29] demonstrates the
marked difference in the degree of stiffness between the models of Courtemanche et al. [11] and Winslow et
al. [56]. Both are stiff, detailed, second-generation models, but the most well-suited numerical method is
different in each case.

In this study, we analyse the stiffness of a wide range of cardiac electrophysiological models. We examine
the eigenvalues of the Jacobian of the solutions for the 37 ionic cell models considered. These eigenvalues are
often related to the stiffness of the model [19], and in fact a stiff initial-value problem is sometimes defined
in terms of the eigenvalues of the Jacobian, e.g., [50]. We show how this information can be used to apply
or design a numerical method for a specific ionic cell model. We give special focus to numerical methods
commonly used in cardiac electrophysiological simulations and demonstrate the efficiency gains that are
possible through the use of eigenvalue data.

The rest of this report is organized as follows. In Section 2, we give a brief outline of ionic cell models and
an overview of the particular models used in this study. In Section 3, we give a brief overview of the concept
of stiffness. We also present the extreme eigenvalue data generated for the models considered and discuss
the implications for model stiffness. Finally, in Section 4, we summarize the conclusions reached based on
our observations.

2 Cardiac electrophysiological models

2.1 Ionic current models

Small-scale processes that occur at the level of the individual cells in the heart can be modelled using
ODEs. Such models can be used to simulate the behaviour of electrical activity in an isolated cell, or, when
coupled with a PDE model, can be used to provide the ionic current to tissue- or organ-level simulations.
The simplest of these models are called first-generation models. A first-generation model contains enough
detail to reproduce an action potential, but it has a simplified description of the underlying physiological
details [50]. Some popular examples of first-generation models are the FHN model and the 1991 Luo–Rudy
model (LR) [28]. More complex models, called second-generation models, contain all of the details included in
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first-generation models and as many fine-scaled physiological details as possible [50]. Most modern models
can be classified as second-generation models because the most useful simulations tend to require details
on the finest level [50]. Although first-generation models have less detail, their advantage is that they are
computationally inexpensive relative to second-generation models.

The heart consists of different types of excitable cells, each having their own properties [42]. As such,
most models are suited to particular type of cell in the heart. Normally, the electrical activity in the heart is
initiated by a spontaneous electrical pulse emanating from specialized tissue called the sinoatrial node. From
the sinoatrial node, electricity spreads to the atrial myocardium [42]. From the atria, the activation wave
spreads to the atrioventricular node, the Purkinje fibres, and, finally, to the ventricles. There are models for
each of these regions of the heart. In particular, there are numerous models of the atria and the ventricles.
On the other hand, there are relatively few models of the atrioventricular node; see, e.g., [42], for a detailed
list of dozens of cardiac electrophysiological models classified in this way.

As an example of a first-generation model, we consider the LR model, sometimes called the Luo–Rudy Phase
1 model. The LR model describes guinea pig ventricular tissue and consists of 8 ODEs. For an individual
cardiac cell, we have that the transmembrane potential, Vm, satisfies [28]

dVm

dt
= −

1

Cm
(Iion + Ist), (1)

where Cm is the membrane capacitance, Iion is the total transmembrane ionic current, and Ist is the stimulus
current. The LR model contains six gating variables that determine the flow of current. The evolution of each
gating variable y is governed by a nonlinear ODE involving rate parameters αy = αy(Vm) and βy = βy(Vm)
in the general form

dy

dt
=

y∞ − y

τy
, (2)

where

y∞ =
αy

αy + βy
and τy =

1

αy + βy
.

The range of each gating variable is [0, 1]. When y = 0, the gate is completely closed, allowing no current
to flow. When y = 1, the gate is completely open, allowing current to flow without being inhibited by the
gate [42]. The remaining ODE in the LR model describes calcium concentration in the cell:

d ([Ca]i)

dt
= −10−4Isi + 0.07 (10−4 − [Ca]i), (3)

where [Ca]i is the intracellular calcium concentration and Isi is the slow inward calcium current [28]. The 6
gating equations of the form (2) are coupled with (1) and (3) to form the complete LR model. Full details
of the model can be found in [28].

As an example of a second-generation model, we consider the model of Winslow et al. [56]. This model
describes canine ventricular tissue and consists of 33 ODEs. The transmembrane potential is again given by
equation (1), and there are eight gating equations in the form of equation (2).
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The following equations are related to the calcium concentration:

dPC1

dt
= −k+

a [Ca2+]nssPC1
+ k−

a PO1
,

dPO1

dt
= k+

a [Ca2+]nssPC1
− k−

a PO1
,−k+

b [Ca2+]mssPO1

+k−
b PO2

− k+
c PO1

+ k−
c PC2

,

dPO2

dt
= k+

b [Ca2+]mssPO1
− k−

b PO2
,

dPC2

dt
= k+

c PO1
− k−

c PC2
.

The following system describes the membrane current of calcium through the L-type channels:

dC0

dt
= βC1 + ωCCa0 − (4α + γ)C0,

dC1

dt
= 4αC0 + 2βC2 +

ω

b
CCa1 − (β + 3α + γa)C1,

dC2

dt
= 3αC1 + 3βC3 +

ω

b2
CCa2 − (2β + 2α + γa2)C2,

dC3

dt
= 2αC2 + 4βC4 +

ω

b3
CCa3 − (3β + α + γa3)C3,

dC4

dt
= αC3 + gO +

ω

b4
CCa4 − (4β + f + γa4)C4,

dO

dt
= fC4 − gO,

dOCa

dt
= f ′CCa4 − g′OCa,

dCCa0

dt
= β′CCa1 + γC0 − (4α′ + ω)CCa0,

dCCa1

dt
= 4α′CCa0 + 2β′CCa2 + γaC1 −

(

β′ + 3α′ +
ω

b

)

CCa1,

dCCa2

dt
= 3α′CCa1 + 3β′CCa3 + γa2C2 −

(

2β′ + 2α′ +
ω

b2

)

CCa2,

dCCa3

dt
= 2α′CCa2 + 4β′CCa4 + γa3C3 −

(

3β′ + α′ +
ω

b3

)

CCa3,

dCCa4

dt
= α′CCa3 + γa4C4 −

(

4β′ + f ′ +
ω

b4

)

CCa4,

Intracellular calcium buffering is described by

d[HTRPNCa]

dt
= k+

htrpn[Ca2+]i([HTRPN]tot − [HTRPNCa])

−k−
htrpn[HTRPNCa],

d[LTRPNCa]

dt
= k+

ltrpn[Ca2+]i([LTRPN]tot − [LTRPNCa])

−k−
ltrpn[LTRPNCa],

where the k-coefficients are constants.
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Finally, intracellular ionic concentrations are described by

d[Na+]i
dt

= −(INa + INa,b + 3INaCa + 3INaK)
AcapCsc

VmyoF
,

d[K+]i
dt

= −(IKr + IKs + Ito1 + IK1,

+IKp + ICa,K − 2INaK)
AcapCsc

VmyoF
,

d[Ca2+]i
dt

= βi

[

Jxfer − Jup − Jtrpn

−(ICa,b − 2INaCa + Ip(Ca))
AcapCsc

2VmyoF

]

,

d[Ca2+]ss
dt

= βss

(

Jrel
VJSR

Vmyo
− Jxfer

Vmyo

Vss
− ICa

AcapCsc

2VmyoF

)

,

d[Ca2+]JSR

dt
= βJSR(Jtr − Jrel),

d[Ca2+]NSR

dt
= Jup

Vmyo

VNSR
− Jtr

VJSR

VNSR
.

We refer the reader to [56] for the remaining details.

2.2 Models used

In this study, we consider 37 different ionic models, including some that are variations of a given model. This
represents a wide variety of models in terms of type of cardiac cell, species modelled, degree of stiffness, and
level of detail. Model data were obtained from the CellML model repository [27]. The CellML representation
of models was used to generate Matlab code via a python script. To ensure the faithfulness of the code to
the model, two specific considerations were made. First, apart from one exception, we used only models
considered to be faithful to the published model according to CellML’s curation guidelines, i.e., models
marked with a gold star on the CellML website. The exception was for the Puglisi–Bers model [41] because
we already had reliable code as part of other work [46]. Second, reference solutions were obtained with the
generated Matlab code and were verified to be the same as reference solutions obtained with JSim [1], an
independent software package capable of parsing CellML files.

A detailed formulation of all models is omitted for the sake of brevity. The reader is instead referred to the
original model papers or to the CellML repository, which contains a concise formulation of each model. A
summary of each of the models used in this study is presented in Table 1 including, for each model, the
name used for it in this report, a reference to the original paper, a brief description of the model, and the
number of ODEs in the model.

For each model, the set of default parameters in CellML was used. All models contain adjustable parameters;
e.g., the model of Pandit et al. (2001) has a parameter that determines if the model should take into account
the influence of diabetes. Because adjusting parameters to the models requires intricate knowledge of each of
the model and increases the chance of human error, we did not vary any of these parameters unless separate
CellML files were provided for variations on the same model. This was the case for the model of Sakmann
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Table 1: Summary of models used. Three variants (endocardial cell, epicardial cell, and M-cell) exist for
each of the models marked with an asterisk.

Model Reference ODEs Description

Beeler–Reuter (1977) [7] 8 Canine ventricular model
Bondarenko et al. (2004) [9] 41 Mouse ventricular model
Courtemanche et al. (1998) [11] 21 Human atrial model
Demir et al. (1994) [13] 27 Rabbit sinoatrial node model
Demir et al. (1999) [12] 29 Rabbit sinoatrial node model
DiFrancesco–Noble (1985) [14] 16 Mammal Purkinje fibre model
Dokos et al. (1996) [15] 18 Rabbit sinoatrial node model
Faber–Rudy (2000) [16] 19 Guinea pig ventricular model
FitzHugh–Nagumo (1961) [17, 33] 2 Nerve membrane model
Fox et al. (2002) [18] 13 Canine ventricular model
Hilgemann–Noble (1987) [20] 15 Rabbit atrial model
Hund–Rudy (2004) [22] 29 Canine ventricular model
Jafri et al. (1998) [23] 31 Guinea pig ventricular model
Luo–Rudy (1991) [28] 8 Guinea pig ventricular model
Maleckar et al. (2008) [30] 30 Human atrial model
McAllister et al. (1975) [32] 10 Canine Purkinje fibre model
Noble (1962) [34] 4 Mammal Purkinje fibre model
Noble–Noble (1984) [35] 15 Rabbit sinoatrial node model
Noble et al. (1991) [36] 17 Guinea pig ventricular model
Noble et al. (1998) [37] 22 Guinea pig ventricular model
Nygren et al. (1998) [38] 29 Human atrial model
Pandit et al. (2001) [39] 26 Rat left-ventricular model
Pandit et al. (2003) [40] 26 Rat left-ventricular model
Puglisi–Bers (2001) [41] 17 Rabbit ventricular model
Sakmann et al. (2000)* [45] 21 Guinea pig ventricular model
Stewart et al. (2009) [48] 20 Human Purkinje fibre model
Ten Tusscher et al. (2004)* [51] 17 Human ventricular model
Ten Tusscher et al. (2006)* [52] 19 Human ventricular model
Wang–Sobie (2008) [55] 35 Neonatal mouse ventricular model
Winslow et al. (1999) [56] 33 Canine atrial model
Zhang et al. (2000) [58] 15 Rabbit sinoatrial node model
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et al. (2000) and the two models of Ten Tusscher et al. studied here. For these three models, endocardial,
epicardial, and M-cell variants of the model were in the CellML repository and thus included in this study.

3 Stiffness

We are concerned with the characterization of stiffness in various ionic cell models. Arguably, there is no
universally accepted definition of stiffness. For example, Hairer and Wanner state that “stiff equations are
problems for which explicit methods don’t work” [19, pg. 2]. Lambert [26] describes stiffness as a phenomenon
rather than a property because the concept of property implies the requirement of a precise mathematical
definition. In this report, we say that a problem is stiff with respect to a given method when stability
requirements force the method to take a smaller step-size than that dictated by accuracy requirements. This
is similar to the definition of stiffness used by Ascher and Petzold [6]. This can be seen as a pragmatic
definition because it frames stiffness in terms of the associated computational consequences. Generally, the
step-size required for a stiff problem is much smaller than accuracy requirements dictate, resulting in a
numerical solution that is much more accurate (and hence more costly) than desired. For efficiency, we
would like that a step-size be chosen based only the accuracy requirements.

Despite the absence of a universally accepted definition, there is a large body of knowledge regarding the
suitability of particular methods for both stiff and non-stiff problems. Numerical methods for the solution
of ODEs can generally be put into two groups, stiff and non-stiff. The placement of a particular method
in a certain group is based on the method’s relative performance on stiff and non-stiff problems. Consider,
for example, forward Euler (FE) and backward Euler (BE) methods [6, ch. 3]. One step with FE is com-
putationally inexpensive. So when the step-size is dictated by accuracy considerations, FE is more efficient
than BE. However, FE has a relatively small region of absolute stability. An attempt to solve a stiff problem
with FE requires a small step-size, and overall the numerical solution process is less efficient than if we use
a method with a larger stability region. Hence, FE is classified as a non-stiff method. On the other hand,
BE has a large stability region. Despite the fact that each step of BE is more expensive than FE because
a system of nonlinear equations must generally be solved at each step, the overall performance trade-off is
favourable: the step-size can be increased by more than enough to offset the extra cost per step. Hence, BE
is classified as a stiff method. This analysis illustrates that choosing the proper type of method to solve the
ODEs can be critical to achieve acceptable performance.

Related to the stiffness of a general initial-value problem (IVP)

dy

dt
= f (t,y) , y(0) = y0, t ∈ [t0, tf ], (4)

are the eigenvalues of the Jacobian J = ∂f
∂y

(t,y) over time. These eigenvalues can give us an indication
of a problem’s stiffness. In particular, eigenvalues with large negative real parts are likely to lead to stiff
problems on their corresponding time intervals. Similarly, problems that have one or more eigenvalues with
positive real parts are likely to be non-stiff. Problems that have eigenvalues with large imaginary parts
also tend to be difficult to solve by standard solvers, but the highly oscillatory nature of the solutions to
the associated linearized problem does not make the problems stiff according to the classical description
of stiffness. In Section 3.1, we find the eigenvalues of the Jacobian of each of the models introduced in
Section 2.2 and discuss the implications for stiffness. In Section 3.2, we discuss numerical experiments with
stiff and non-stiff methods to illustrate the eigenvalue discussion.
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3.1 Eigenvalue Data

For each model in Section 2.2, we found the eigenvalues of the Jacobian in the following way. First, a
reference solution was generated using Matlab’s ode15s [31]. This was done by lowering the error tolerances
for successive approximations until two approximations were identical for at least 10 significant digits at 100
equally spaced output points. Code representing the derivative of each model was created via automatic
differentiation using AdiMat [8]. We found a value for the Jacobian at every 1 ms of simulated time using
the derivative code with the reference solution, and we found the eigenvalues of each of these Jacobians with
Matlab’s eig function.

The extreme values in the set of eigenvalues associated with a model are of particular interest because they
offer a worst-case look at the stiffness properties. At each point in time considered, we found the maximum
and minimum values of both the real and complex parts of the eigenvalues. The extreme values across the
solution interval of these minimum and maximum values are reported in Table 2 along with the percentage of
time at least one pair of complex eigenvalues was present. As we can see, there is a wide range of behaviours
encompassed by these models, from models such as FHN and Beeler–Reuter that do not have relatively large
negative eigenvalues to models such as Wang–Sobie and that of Maleckar et al. that have moderately large
negative eigenvalues to the model of Pandit et al. (2003) that has extremely large negative eigenvalues.

Although not apparent from these tables, we note that problems may not be stiff everywhere in their
respective intervals of integration. Accordingly it may be possible to use different integration methods that
are more appropriate at different times. We also note integration methods that use a constant step size are
subject to the constraints imposed by the worst-case behaviour of stiffness and hence tend to perform poorly.

Figures demonstrating the extreme values of these eigenvalues are presented in Appendix A.

3.2 Numerical Experiments

3.2.1 Overview

We now discuss numerical experiments to show how the results presented in Section 3.1 can be utilized.
We describe numerical experiments for 8 integration methods for ionic cell models: FE, the Rush–Larsen
(RL) [44] method, and the recently proposed second-order generalization of RL (GRL2) [49]. The primary
goal of these experiments is not to find the most efficient numerical method possible but rather to illustrate
how the stiffness of particular models affects the performance of different numerical methods. A secondary
goal of these experiments is to demonstrate the suitability of numerical methods to particular ionic models
according to their degree of stiffness.

For each numerical method, we aim to balance the requirements for accuracy and efficiency. To quantify the
error in a solution, we use the relative root mean square error (RRMS) error of the transmembrane potential:

RRMS :=

√

√

√

√

1

N

∑N
i=1(Vi − V̂i)2
∑N

i=1 V̂ 2
i

,

where Vi is the numerical approximation and V̂i is the reference solution at time ti as described above. For
each model and numerical method considered, we maximize the step-size while producing a solution that
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Table 2: Extreme values of the eigenvalues for each model. The minimum real part of the set of eigenvalues is
denoted min(Re(λ)), and the maximum real part of the set of eigenvalues is denoted max(Re(λ)). Similarly,
the minimum and maximum imaginary parts are denoted min(Im(λ)) and max(Im(λ)). The percentage of
the solution interval in which there is at least one pair of complex eigenvalues is also reported.

Model min(Re(λ)) max(Re(λ)) min(Im(λ)) max(Im(λ)) % Complex

Beeler–Reuter (1977) –8.20E+1 –3.968E–3 0.00E+0 0.00E+0 0
Bondarenko (2004) –8.49E+3 4.51E+0 –2.80E+0 2.80E+0 64
Courtemanche et al. (1998) –1.29E+2 1.87E–1 –4.50E+0 4.50E+0 82
Demir et al. (1994) –2.24E+4 4.57E+0 –7.35E+0 7.35E+0 100
Demir et al. (1999) –3.45E+4 4.81E+2 –6.50E+1 6.50E+1 66
DiFrancesco–Noble (1985) –2.62E+4 8.24E+1 –3.21E+0 3.21E+0 31
Dokos et al. (1996) –2.99E+4 2.49E–15 –6.39E+1 6.39E+1 100
Faber–Rudy (2000) –1.83E+2 1.36E–17 0.00E+0 0.00E+0 0
FitzHugh–Nagumo (1961) –4.38E–1 1.78E–1 –4.59E–2 4.59E–2 45
Fox et al. (2002) –4.38E+2 4.44E–2 –4.18E–1 4.18E–1 65
Hilgemann–Noble (1987) –2.86E+4 1.81E–14 –7.71E+1 7.71E+1 21
Hund (2004) –1.95E+2 2.69E–2 –1.57E–3 1.57E–3 4
Jafri et al. (1998) –1.12E+3 2.31E–7 –1.91E–2 1.91E–2 52
Luo–Rudy (1991) –1.51E+2 7.01E–2 –4.11E–2 4.11E–2 74
Maleckar et al. (2008) –4.16E+4 2.42E+2 –3.42E+2 3.42E+2 28
McAllister et al. (1975) –8.18E+1 –4.79E–4 –2.85E–2 2.85E–2 100
Noble (1962) –9.79E+3 –1.92E+0 0.00E+0 0.00E+0 0
Noble–Noble (1984) –6.56E+3 1.35E–15 –1.36E+1 1.36E+1 100
Noble et al. (1991) –3.88E+4 1.78E–12 0.00E+0 0.00E+0 0
Noble et al. (1998) –3.60E+4 –6.32E–7 –8.41E+0 8.41E+0 9
Nygren et al. (1998) –4.03E+4 1.22E–1 –3.88E+2 3.88E+2 22
Pandit et al. (2001) –8.89E+4 2.20E–14 0.00E+0 0.00E+0 0
Pandit et al. (2003) –3.90E+9 6.83E+0 –8.09E–5 8.09E–5 17
Puglisi–Bers (2001) –1.67E+1 1.29E+0 –1.52E–1 1.52E–1 35
Sakmann et al. (2000) – Endocardial –2.93E+4 6.02E–1 –5.21E+1 5.21E+1 100
Sakmann et al. (2000) – Epicardial –2.93E+4 3.59E+1 –5.24E+1 5.24E+1 100
Sakmann et al. (2000) – M-cell –2.93E+4 1.03E+2 –5.20E+1 5.20E+1 100
Stewart et al. (2009) –1.38E+2 3.34E+0 –1.56E+0 1.56E+0 92
Ten Tusscher et al. (2004) – Endocardial –1.17E+3 1.16E–1 –4.67E+0 4.67E+0 17
Ten Tusscher et al. (2004) – Epicardial –1.17E+3 1.12E–1 –4.73E+0 4.73E+0 18
Ten Tusscher et al. (2004) – M-cell –1.16E+3 1.12E–1 –4.73E+0 4.73E+0 22
Ten Tusscher et al. (2006) – Endocardial –1.26E+3 1.94E–8 0.00E+0 0.00E+0 0
Ten Tusscher et al. (2006) – Epicardial –1.26E+3 1.92E–8 0.00E+0 0.00E+0 0
Ten Tusscher et al. (2006) – M-cell –1.26E+3 1.92E–8 0.00E+0 0.00E+0 0
Wang–Sobie (2008) –1.22E+2 1.23E+0 –1.23E+0 1.23E+0 46
Winslow et al. (1999) –1.84E+4 1.53E+0 –4.22E–1 4.22E–1 63
Zhang et al. (2000) –2.22E+4 1.29E+2 –1.00E+2 1.00E+2 89
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has less than 5% RRMS error. For each combination of numerical method and model, we report the result
for the step-size with the least execution time and less than 5% RRMS error.

We used constant step sizes in our experiments to reflect the typical use of the cell models within a tissue-
scale simulation. As mentioned, these simulations typically employ operator splitting, and constant equal
step sizes are used for integrating both the PDEs and the ODEs. The use of variable step sizes for the
integration of the ODEs over long time intervals can generally be expected to be more efficient than the
use of constant steps [46] and hence would likely be more effective in a scenario where a fully coupled (i.e.,
unsplit) integration approach is used; see e.g., [57].

We placed two additional requirements on the step-size. First, the maximum step-size allowed was equal
to the length of time in which the stimulus current was applied. The cases for which this maximum was
reached are denoted with a dagger in Tables 3–6. Second, the step-size was adjusted at up to three points
in time in order to resolve important events: the start of the application of stimulus current, the end of the
application of stimulus current, and the end point of the simulation. If the integration was to step past one
of these three points, the step-size would be adjusted, for that step only, to land on the point exactly. This
was done mainly because a discontinuous stimulus application can introduce errors that are avoidable if the
points at which the discontinuities occur are resolved.

3.2.2 Methods

The first method used in our experiments is the explicit first-order FE method. Applied to the general
IVP (4), one step of FE from (tn−1,yn−1) to (tn,yn) is given by

yn = yn−1 + ∆tnf (tn−1,yn−1) ,

tn = tn−1 + ∆tn,

where yn ≈ y(tn) and tn = tn−1 + ∆tn. It is a popular method in practice mainly due to the ease of
implementation.

FE belongs to the more general family of explicit Runge–Kutta (ERK) methods; see, e.g., [6]. ERK methods
use more function evaluations (or stages) in a given step and combine them to produce a higher order of
accuracy than FE. Because of their bounded stability regions, they are generally considered to be effective
on non-stiff problems. In our experiments, we use the three well-known, higher-order ERK methods as
representative candidates for commonly used ERK methods: the two-stage, second-order trapezoidal (TRAP)
method, the two-stage, second-order mid-point (MID) method, and the classical four-stage, fourth-order ERK
(ERK4) method; see e.g. [6].

A non-standard yet popular method in cell model simulation is the RL method. The RL method advances
the solution to the gating equations (2) using

yn = y∞ + (yn−1 − y∞)e
−

∆tn
τy , (5)

which represents the exact solution of (2) assuming all variables besides y are constant. FE is then used to
advance the solution of the remaining equations. This method is an effective stiff solver for the Luo–Rudy
model [47]; i.e., the step-size can be chosen based on accuracy considerations. RL is generally one of the
most popular methods in practice due to its good stability properties and ease of implementation. However,
this method is only first-order accurate and thus suffers from the usual drawbacks of low-order methods.
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The second non-standard method that we investigate is the GRL2 method developed by Sundnes et al. [49].
GRL2 decouples and linearizes the ODE system consisting of m ODEs around a point y = η to obtain

dyi

dt
= fi(η) +

∂

∂yi
fi(η) (yi − ηi) , yi(tn) = ηi, (6)

for i = 1, 2, . . . , m, where the subscript i denotes component i of a vector. The exact solution of (6) is given
by

yi(t) = ηi +
a

b

(

eb(t−tn) − 1
)

, i = 1, 2, . . . , m, (7)

where a = fi(η) and b = ∂fi(η)/∂yi. The numerical solution yn+1 at time t = tn+1 is then obtained in two
steps:

1. Let ηi = yn,i. Estimate the solution at time tn+1/2 with

yn+1/2,i = ηi +
a

b

(

eb(∆tn/2) − 1
)

, i = 1, 2, . . . , m. (8)

2. Let ȳn+1/2 be yn+1/2 with component i replaced by yn,i. For each i, set η = ȳn+1/2 and compute the
numerical solution at time tn+1 from

yn+1,i = ηi +
a

b

(

eb∆tn − 1
)

, i = 1, 2, . . . , m. (9)

GRL2 and RL treat the gating equations (2) in a similar manner. The main difference is that GRL2
integrates the non-gating equations with an exponential formula based on local linearization, whereas RL
uses FE. GRL2 is verified to be second order in [5].

We note that care must be taken in the implementation of GRL2 to ensure efficiency, in particular regarding
the computation of ∂f/∂y. For example, the finite-difference approximation of ∂fi(η)/∂yi is performed via

∂fi(η)/∂yi ≈
fi(η

1, . . . , ηi−1, ηi + δ, ηi+1, . . . , ηm) − fi(η)

δ
, (10)

where δ = 10−8 for double-precision calculations. Without careful implementation, this could add another
m full ODE right-hand side function evaluations per step, making the method prohibitively expensive for
all but the simplest models. Moreover, we note that a full ODE right-hand-side function evaluation is not
needed for each ∂fi(η)/∂yi. Also in practice, if |∂fi(η)/∂yi| < δ, the limit as ∂fi(η)/∂yi → 0 is used instead
of (7):

yi(t) = ηi + a(t − tn), i = 1, . . . , m. (11)

For the results reported here for GRL2, we used a finely tuned version of the cell model code. This code
had the ability to return the value of the right-hand side of any particular ODE in the system and would
compute only the information required for the individual ODE. This fine tuning was necessary for GRL2 to
be competitive.

Finally, we also consider two specialized methods, called ROCK2 and ROCK4. These methods are ERK
methods constructed to maximize the segment of the negative real axis in their stability regions. This
construction is meant to improve the efficiency of these methods relative to standard ERK methods for
mildly stiff problems with real eigenvalues. See [3] and [2] for more details on these methods.
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3.2.3 Results

For each pair of a model given in Section 2.2 and a method given in Section 3.2.2, we find a maximum
step size to 3 significant digits subject to the conditions given in Section 3.2.1. With this information, we
performed an experiment to determine the best execution time possible for a combination of a model with
a method. All numerical experiments were performed in Matlab on an iMac with 2.8 GHz Intel Core Duo
processor with 4 GB DDR SD RAM running at 667 MHz. Except for the model of Pandit et al. (2003),
we report the minimum of 100 runs of each combination of a method and model. Because the model of
Pandit et al. (2003) required significant run times with the methods used, the execution time reported is the
minimum of 10 runs. In all cases, we ensured that the variance of the times recorded for a given combination
was small.

Results for FE and the higher-order ERK methods TRAP, MID, and ERK4 are presented in Tables 3 and
4. Results for RL, GRL2, ROCK2, and ROCK4 are presented in tables Tables 5 and 6. From these tables,
we see only FE, RL, and GRL2 are the most efficient on any model. For these 3 methods on the models
considered, the non-standard methods RL and GRL2 generally outperform FE. RL is the most efficient in
18 cases, GRL2 is the most efficient in 15 cases, and FE is the most efficient in 4 cases. GRL2 can usually
take a larger step than RL, which can in turn usually take a larger step than FE. However, GRL2 generally
has a higher cost per step than RL, which in turn has a higher cost per step than FE. We see that generally
the increases in acceptable step sizes for GRL2 and RL are large enough to more than offset the added cost
per step when compared with FE. The situation for GRL2 compared with RL is less clear, with each being
the most efficient on roughly an equal number of models. These results further support the findings in [49]
for the competitiveness of GRL2 as a method for the integration of cell models, albeit at the expense of a
non-trivial implementation. In four cases FE was the most efficient method: FHN, Noble (1962), Pandit et
al. (2001), and Pandit et al. (2003). In these cases, the increase maximum step size for RL or GRL2 offers
little or no improvement in performance relative to FE due to the higher cost per step. Except for a few cases,
all the higher-order ERK methods (including ROCK2 and ROCK4) underperformed relative to FE. We also
performed experiments with other implicit-explicit Runge–Kutta (IMEX-RK) methods; see, e.g., [46] and
references therein. In particular, we examined the solution of the model of Pandit et al. (2003) with three
IMEX-RK methods: ARK3(2)4L[2]SA and ARK5(3)8L[2]SA from [24], denoted ARK3 and ARK5, and the
uniformly accurate BHR553 scheme from [10] with γ = γ2 ≈ 0.57281606. Results for experiments with these
methods is presented in Table 7. As could have been anticipated based on the stiffness characteristics of the
models and previous investigations [46], all of these IMEX-RK methods outperformed FE (and hence also
RL and GRL2) on this model, with ARK3 coming in about 30 times faster than FE.
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Table 3: Largest step sizes ∆t and corresponding execution times in seconds of FE and TRAP yielding less
than 5% RRMS error.

Model FE TRAP
∆t Time ∆t Time

Beeler–Reuter (1977) 2.53E–2 5.19E–2 2.46E–2 1.15E–1
Bondarenko et al. (2004) 2.13E–4 3.81E+0 2.13E–4 8.38E+0
Courtemanche et al. (1998) 1.94E–2 4.27E+0 1.94E–2 1.11E+1
Demir et al. (1994) 5.95E–2 1.74E–2 5.53E-2 4.11E–2
Demir et al. (1999) 5.97E–2 2.13E–2 5.54E–2 5.07E–2
DiFrancesco–Noble (1985) 7.85E–2 8.59E–2 7.66E–2 1.77E–1
Dokos et al. (1996) 7.30E–2 3.44E–2 6.91E–2 8.02E–2
Faber–Rudy (2000) 1.12E–2 1.69E–1 1.12E–2 5.91E–1
FitzHugh–Nagumo (1961) 5.00E–1† 3.93E–3 5.00E–1† 8.64E–3
Fox et al. (2002) 4.60E–3 4.11E–1 4.60E–3 7.59E–1
Hilgemann–Noble (1987) 6.25E–2 1.69E–1 6.21E–2 3.12E–1
Hund–Rudy (2004) 1.11E–2 1.75E–1 1.11E–2 3.22E–1
Jafri et al. (1998) 5.77E–4 6.18E+0 5.77E–4 1.18E+1
Luo–Rudy (1991) 1.34E–2 3.61E–1 1.46E–2 6.15E–1
Maleckar et al. (2008) 5.02E–2 1.09E–1 5.31E–2 2.02E–1
McAllister et al. (1975) 2.46E–2 1.21E–1 2.11E–2 2.37E–1
Noble (1962) 2.03E–1 7.63E–3 2.13E–1 1.23E–2
Noble–Noble (1984) 2.04E–1 1.82E–1 1.78E–1 4.63E–1
Noble et al. (1991) 5.15E–2 3.00E–2 5.34E–2 4.96E–2
Noble et al. (1998) 5.58E–2 5.25E–2 5.70E–2 8.99E–2
Nygren et al. (1998) 5.36E–2 1.02E–1 5.30E–2 1.87E–1
Pandit et al. (2001) 2.91E–4 8.85E+0 2.91E–4 2.04E+1
Pandit et al. (2003) 1.08E–2 4.20E+4 1.08E–2 1.66E+5
Puglisi–Bers (2001) 1.08E–2 4.43E–1 1.23E–2 7.23E–1
Sakmann et al. (2000) – Endocardial 6.90E–2 4.73E–2 6.83E–2 8.94E–2
Sakmann et al. (2000) – Epicardial 6.90E–2 5.11E–2 6.81E–2 8.92E–2
Sakmann et al. (2000) – M-cell 6.86E–2 5.12E–2 6.77E–2 9.06E–2
Stewart et al. (2009) 1.50E–2 4.35E–1 1.45E–2 8.43E–1
Ten Tusscher et al. (2004) – Endocardial 1.78E–3 1.75E+0 1.70E–3 3.38E+0
Ten Tusscher et al. (2004) – Epicardial 1.78E–3 1.75E+0 1.70E–3 3.38E+0
Ten Tusscher et al. (2004) – M-cell 1.76E–3 1.25E+0 1.71E–3 2.48E+0
Ten Tusscher et al. (2006) – Endocardial 1.62E–3 1.33E+0 1.55E–3 2.53E+0
Ten Tusscher et al. (2006) – Epicardial 2.14E–3 9.79E–1 1.55E–3 2.07E+0
Ten Tusscher et al. (2006) – M-cell 2.14E–3 9.79E–1 1.56E–3 2.14E+0
Wang–Sobie (2008) 1.66E–2 5.95E–2 1.63E–2 1.06E–1
Winslow et al. (1999) 1.07E–4 1.70E+1 1.07E–4 3.55E+1
Zhang et al. (2000) 9.90E–2 5.19E–2 9.95E–2 1.01E–1
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Table 4: Largest step sizes ∆t and corresponding execution times in seconds of MID and ERK4 yielding less
than 5% RRMS error.

Model MID ERK4
∆t Time ∆t Time

Beeler–Reuter (1977) 2.53E–2 1.00E–1 3.41E–2 1.45E–1
Bondarenko et al. (2004) 2.13E–4 8.38E+0 2.99E–4 1.16E+1
Courtemanche et al. (1998) 2.07E–2 1.07E+1 2.68E–2 2.32E+1
Demir et al. (1994) 5.67E–2 4.01E–2 7.55E–2 5.85E–2
Demir et al. (1999) 5.67E–2 4.28E–2 7.56E–2 7.23E–2
DiFrancesco–Noble (1985) 7.92E–2 1.63E–1 1.06E–1 2.35E–1
Dokos et al. (1996) 6.93E–2 8.00E–2 9.52E–2 1.13E–1
Faber–Rudy (2000) 1.12E–2 4.55E–1 1.55E–2 4.48E–1
FitzHugh–Nagumo (1961) 5.00E–1† 8.64E–3 5.00E–1† 1.52E–2
Fox et al. (2002) 4.60E–3 7.59E–1 6.51E–3 1.00E+0
Hilgemann–Noble (1987) 6.26E–2 3.12E–1 8.62E–2 4.31E–1
Hund–Rudy (2004) 1.11E–2 3.21E–1 1.54E–2 4.57E–1
Jafri et al. (1998) 6.60E–4 1.82E+1 7.25E–4 2.06E+1
Luo–Rudy (1991) 1.46E–2 6.15E–1 1.86E–2 1.14E+0
Maleckar et al. (2008) 4.91E–2 2.09E–1 6.82E–2 2.81E–1
McAllister et al. (1975) 2.19E–2 2.48E–1 3.49E–2 3.19E–1
Noble (1962) 2.02E–1 1.26E–2 8.38E–2 1.76E–2
Noble–Noble (1984) 1.77E–1 4.60E–1 2.41E–1 6.64E–1
Noble et al. (1991) 5.15E–2 5.13E–2 7.38E–2 6.94E–2
Noble et al. (1998) 5.58E–2 9.31E–2 7.92E–2 1.26E–1
Nygren et al. (1998) 5.21E–2 1.87E–1 7.19E–2 2.56E–1
Pandit et al. (2001) 2.91E–4 2.04E+1 4.03E–4 2.75E+1
Pandit et al. (2003) 1.08E–2 1.66E+5 2.82E–2 3.09E+5
Puglisi–Bers (2001) 1.27E–2 6.84E–1 1.48E–2 1.19E+0
Sakmann et al. (2000) – Endocardial 6.90E–2 8.85E–2 9.47E–2 1.26E–2
Sakmann et al. (2000) – Epicardial 6.90E–2 8.80E–2 9.46E–2 1.25E–1
Sakmann et al. (2000) – M-cell 6.87E–2 8.92E–2 9.40E–2 1.27E–1
Stewart et al. (2009) 1.51E–2 8.17E–1 2.02E–2 1.14E+0
Ten Tusscher et al. (2004) – Endocardial 1.78E–3 3.23E+0 2.36E–3 4.58E+0
Ten Tusscher et al. (2004) – Epicardial 1.79E–3 3.23E+0 2.37E–3 4.58E+0
Ten Tusscher et al. (2004) – M-cell 1.78E–3 2.44E+0 2.37E–3 3.46E+0
Ten Tusscher et al. (2006) – Endocardial 1.62E–3 2.46E+0 2.24E–3 3.35E+0
Ten Tusscher et al. (2006) – Epicardial 1.54E–3 1.75E+0 4.75E–3 2.09E+0
Ten Tusscher et al. (2006) – M-cell 1.53E–3 1.79E+0 4.73E–3 2.26E+0
Wang–Sobie (2008) 1.66E–2 1.05E–1 2.27E–2 1.46E–1
Winslow et al. (1999) 1.07E–4 3.55E+1 1.30E–4 5.51E+1
Zhang et al. (2000) 9.95E–2 1.01E–1 1.32E–1 1.35E–1
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Table 5: Largest step sizes ∆t and corresponding execution times in seconds of RL and GRL2 yielding less
than 5% RRMS error.

Model RL GRL2
∆t Time ∆t Time

Beeler–Reuter (1977) 8.49E–1 9.83E–3 8.58E–1 3.09E–2
Bondarenko et al. (2004) 2.50E–4 4.13E+0 1.40E–2 1.85E+0
Courtemanche et al. (1998) 3.45E–1 4.79E–1 9.95E–1 2.07E–1
Demir et al. (1994) 3.45E–1 4.79E–1 9.95E–1 2.07E–1
Demir et al. (1999) 9.66E–2 1.71E–2 2.49E–1 8.24E–2
DiFrancesco–Noble (1985) 6.62E–1 7.66E–2 9.99E–1 2.67E–1
Dokos et al. (1996) 7.64E–1 3.37E–3 9.99E–1 8.35E–2
Faber–Rudy (2000) 9.51E–1 4.60E–3 6.35E–1 1.38E–1

FitzHugh–Nagumo (1961) N/A N/A 5.00E–1† 3.19E–2
Fox et al. (2002) 6.37E–1 3.11E–2 7.74E–1 7.70E–2
Hilgemann–Noble (1987) 8.06E–2 9.56E–2 9.96E–2 6.23E–2
Hund–Rudy (2004) 4.17E–2 5.35E–2 6.20E–1 4.26E–1
Jafri et al. (1998) 5.89E–4 4.42E+0 1.59E–3 8.38E+0

Luo–Rudy (1991) 2.50E–1 6.94E–2 1.00E+0† 2.31E–2
Maleckar et al. (2008) 7.50E–1 9.44E–2 8.21E–1 3.84E–1
McAllister et al. (1975) 7.06E–1 6.00E–2 2.63E–1 2.32E–1
Noble (1962) 9.41E–2 8.82E–2 2.22E–1 7.89E–2

Noble–Noble (1984) 2.73E–1 1.20E–1 1.00E+0† 4.99E–2
Noble et al. (1991) 1.53E–1 1.21E–2 6.25E–1 9.31E–3
Noble et al. (1998) 1.57E–1 1.50E–2 5.43E–1 2.67E–2
Nygren et al. (1998) 8.88E–2 8.68E–2 9.81E–1 3.65E–2
Pandit et al. (2001) 2.91E–4 1.01E+1 4.98E–4 2.56E+1
Pandit et al. (2003) 1.04E–7 8.37E+4 9.28E–7 8.93E+4
Puglisi–Bers (2001) 4.30E–1 8.35E–2 6.24E–1 4.18E–1
Sakmann et al. (2000) – Endocardial 2.36E–1 1.80E–2 9.71E–1 1.03E–2
Sakmann et al. (2000) – Epicardial 2.36E–1 1.80E–2 9.71E–1 1.03E–2
Sakmann et al. (2000) – M-cell 2.36E–1 1.80E–2 9.71E–1 1.03E–2
Stewart et al. (2009) 1.62E–1 5.60E–2 3.58E–2 8.61E–2

Ten Tusscher et al. (2004) – Endocardial 1.00E+0† 5.43E–3 1.00E+0† 1.30E–2
Ten Tusscher et al. (2004) – Epicardial 1.00E–1† 5.43E–3 1.00E+0† 1.30E–2
Ten Tusscher et al. (2004) – M-cell 2.80E–1 1.29E–2 9.81E–1 2.84E–2
Ten Tusscher et al. (2006) – Endocardial 1.52E–1 6.41E–2 7.80E–1 9.27E–3
Ten Tusscher et al. (2006) – Epicardial 2.80E–1 3.64E–2 8.39E–1 7.06E–3
Ten Tusscher et al. (2006) – M-cell 2.05E–1 4.17E–2 7.77E–1 9.27E–3
Wang–Sobie (2008) 5.26E–2 2.19E–2 4.97E–1 1.61E–2
Winslow et al. (1999) 2.80E–4 8.84E+0 1.34E–3 2.26E+0

Zhang et al. (2000) 1.00E+0† 7.69E–3 1.00E+0† 1.85E–1
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Table 6: Largest step sizes ∆t and corresponding execution times in seconds of ROCK2 and ROCK4 yielding
less than 5% RRMS error.

Model ROCK2 ROCK4
∆t Time ∆t Time

Beeler–Reuter (1977) 7.62E–2 1.67E–1 7.97E–2 4.12E–1
Bondarenko et al. (2004) 6.17E–4 5.04E+0 7.24E–4 1.63E+1
Courtemanche et al. (1998) 5.90E–2 7.31E+0 5.99E–2 2.13E+1
Demir et al. (1994) 1.74E–1 8.85E–2 1.81E–1 2.48E–1
Demir et al. (1999) 1.66E–1 1.06E–1 1.76E–1 2.74E–1
DiFrancesco–Noble (1985) 2.50E–1 4.10E–1 2.50E–1 1.14E+0
Dokos et al. (1996) 2.12E–1 1.30E–1 2.15E–2 3.47E–1
Faber–Rudy (2000) 3.42E–2 7.60E–1 3.54E–2 2.08E+0

FitzHugh–Nagumo (1961) 5.00E–1† 4.16E–2 5.00E–1† 1.04E–1
Fox et al. (2002) 1.42E–2 1.67E+0 1.37E–2 5.12E+0
Hilgemann–Noble (1987) 1.91E–1 1.22E–1 1.86E–1 3.56E–1
Hund–Rudy (2004) 3.40E–2 8.02E–1 3.38E–2 2.33E+0
Jafri et al. (1998) 1.30E–3 1.90E+1 1.38E–3 5.45E+1
Luo–Rudy (1991) 5.04E–2 3.91E–1 4.84E–2 1.32E+0
Maleckar et al. (2008) 1.00E+0† 7.76E–1 1.00E+0† 2.24E+0
McAllister et al. (1975) 3.36E–2 6.81E–1 5.32E–2 1.13E+0
Noble (1962) 6.33E–1 2.72E–2 6.91E–1 6.25E–2
Noble–Noble (1984) 5.41E–1 4.79E–2 5.12E–1 1.06E–1
Noble et al. (1991) 1.58E–1 9.32E–2 1.54E–1 3.49E–1
Noble et al. (1998) 1.71E–1 1.08E–1 1.66E–1 2.52E–1
Nygren et al. (1998) 1.54E–1 4.76E–1 1.57E–1 1.33E+0
Pandit et al. (2001) 5.25E–5 2.84E+1 5.25E–4 6.29E+1
Pandit et al. (2003) 8.39E–6 9.74E+4 8.55E–6 4.62E+5
Puglisi–Bers (2001) 6.40E–2 9.22E–1 6.55E–2 1.57E+0
Sakmann et al. (2000) – Endocardial 2.10E–1 2.54E–1 2.05E–1 7.03E–1
Sakmann et al. (2000) – Epicardial 2.10E–1 2.69E–1 2.05E–1 7.32E–1
Sakmann et al. (2000) – M-cell 2.08E–1 2.92E–1 2.03E–1 .7.82E–1
Stewart et al. (2009) 4.50E–2 1.88E+0 4.38E–2 5.56E+0
Ten Tusscher et al. (2004) – Endocardial 5.23E–3 7.50E+0 5.29E–3 2.97E+1
Ten Tusscher et al. (2004) – Epicardial 5.23E–3 7.50E+0 5.29E–3 2.97E+1
Ten Tusscher et al. (2004) – M-cell 2.23E–3 1.54E+1 2.23E–3 4.03E+1
Ten Tusscher et al. (2006) – Endocardial 4.50E–3 6.12E+0 4.50E–3 1.75E+1
Ten Tusscher et al. (2006) – Epicardial 5.35E–3 4.73E+0 4.65E–3 1.40E+1
Ten Tusscher et al. (2006) – M-cell 4.25E–3 6.62E+0 4.66E–3 1.38E+1
Wang–Sobie (2008) 5.07E–2 2.72E–1 4.94E–2 7.55E–1
Winslow et al. (1999) 1.13E–3 8.21E+1 1.15E–3 2.44E+2
Zhang et al. (2000) 2.96E–1 1.28E–1 3.40E–1 3.60E–1
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Table 7: Largest step sizes ∆t and corresponding execution times in seconds of ARK3, ARK5, and BHR553
yielding less than 5% RRMS error when solving the model of Pandit et al. (2003).

ARK3 ARK5 BHR553
∆t Time ∆t Time ∆t Time

2.50E–3 1.39E+3 8.50E–4 9.06E+3 1.15E–3 6.06E+3

4 Conclusions

In this report, we examined the eigenvalues of the Jacobian of a variety of cardiac electrophysiological models.
In particular, we examined the consequences for stiffness that arise from these eigenvalues and demonstrated
how they affect the performance of various numerical methods.

The extremes of these eigenvalues were presented in Section 3.1. The wide range of cardiac electrophysio-
logical models led to considerable differences in the eigenvalues from one model to another. One can infer
from these data that there is a large variation in the stiffness properties among the models. At one extreme
is the non-stiff FitzHugh–Nagumo model; at the other is the highly stiff model of Pandit et al. (2003). The
data suggest that most cell models are moderately stiff for the typical accuracies required.

Numerical experiments with 8 integration methods (denoted FE, TRAP, MID, ERK4, RL, GRL2, ROCK2,
and ROCK4) for cell models were discussed in Section 3.2. The non-standard methods GRL2 and RL
were found to outperform the other ERK methods on 33 of the 37 models considered. Individually, each
of RL and GRL2 was the most efficient method on roughly an equal number of models. This observation
lends support to the effectiveness of the recently proposed GRL2 method, albeit at the cost of a non-trivial
implementation. RL seems to generally strike a good balance between efficient integration and ease of
implementation. Nonetheless, these methods did not perform satisfactorily on all models. In particular, all
the methods considered face a severe step-size restriction due to stiffness for the models of Winslow et al.
and Pandit et al. (2003). For the model of Pandit et al. (2003), we found that IMEX-RK methods generally
performed much better, with reductions in CPU time of up to 30.
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A Plots of eigenvalue data

Figures 1–128 give plots of the eigenvalues over time for all models. In the case of a model with non-
zero imaginary parts, four figures are presented: the extreme real part of the eigenvalues over time, the
extreme imaginary part of the eigenvalues over time, the extreme real and complex parts over time, and all
the eigenvalues over time. In the case of a model with no non-zero imaginary parts, only two figures are
presented: the extreme values of the eigenvalues over time and all the eigenvalues over time.
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Figure 1: Extreme real eigenvalues in the Beeler–Reuter model.
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Figure 2: Plot of all eigenvalues at all times measured in the Beeler–Reuter model.
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Figure 3: Extreme real eigenvalues in the model of Bondarenko et al.
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Figure 4: Extreme imaginary eigenvalues in the model of Bondarenko et al.
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Figure 5: Extreme values of eigenvalues over time in the model of Bondarenko et al.
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Figure 6: Plot of all eigenvalues at all times measured in the model of Bondarenko et al.
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Figure 7: Extreme real eigenvalues in the model of Courtemanche et al.
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Figure 8: Extreme imaginary eigenvalues in the model of Courtemanche et al.
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Figure 9: Extreme values of eigenvalues over time in the model of Courtemanche et al.
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Figure 10: Plot of all eigenvalues at all times measured in the model of Courtemanche et al.
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Figure 11: Extreme real eigenvalues in the model of Demir et al. (1994).
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Figure 12: Extreme imaginary eigenvalues in the model of Demir et al. (1994).
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Figure 13: Extreme values of eigenvalues over time in the model of Demir et al. (1994).
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Figure 14: Plot of all eigenvalues at all times measured in the model of Demir et al. (1994).
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Figure 15: Extreme real eigenvalues in the model of Demir et al. (1999).
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Figure 16: Extreme imaginary eigenvalues in the model of Demir et al. (1999).
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Figure 17: Extreme values of eigenvalues over time in the model of Demir et al. (1999).
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Figure 18: Plot of all eigenvalues at all times measured in the model of Demir et al. (1999).
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Figure 19: Extreme real eigenvalues in the DiFrancesco–Noble model (1985)
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Figure 20: Extreme imaginary eigenvalues in the DiFrancesco–Noble model (1985).
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Figure 21: Extreme values of eigenvalues over time in the DiFrancesco–Noble model (1985).

42



−3 −2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
4

−4

−3

−2

−1

0

1

2

3

4

Real

Im
ag

in
ar

y

Figure 22: Plot of all eigenvalues at all times measured in the DiFrancesco–Noble model (1985).
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Figure 23: Extreme real eigenvalues in the model of Dokos et al.
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Figure 24: Extreme imaginary eigenvalues in the model of Dokos et al.
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Figure 25: Extreme values of eigenvalues over time in the model of Dokos et al.
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Figure 26: Plot of all eigenvalues at all times measured in the model of Dokos et al.
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Figure 27: Extreme real eigenvalues in the Faber–Rudy model (2000).
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Figure 28: Plot of all eigenvalues at all times measured in the Faber–Rudy model (2000).
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Figure 29: Extreme real eigenvalues in the FitzHugh-Nagumo model (1961).
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Figure 30: Extreme imaginary eigenvalues in the FitzHugh-Nagumo model (1961).
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Figure 31: Extreme values of eigenvalues over time in the FitzHugh-Nagumo model (1961).
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Figure 32: Plot of all eigenvalues at all times measured in the FitzHugh-Nagumo model (1961).
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Figure 33: Extreme real eigenvalues in the model of Fox et al. (2002)
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Figure 34: Extreme imaginary eigenvalues in the model of Fox et al. (2002).
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Figure 35: Extreme values of eigenvalues over time in the model of Fox et al. (2002).
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Figure 36: Plot of all eigenvalues at all times measured in the model of Fox et al. (2002).
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Figure 37: Extreme real eigenvalues in the Hilgemann–Noble model (1987).
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Figure 38: Extreme imaginary eigenvalues in the Hilgemann–Noble model (1987).
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Figure 39: Extreme values of eigenvalues over time in the Hilgemann–Noble model (1987).
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Figure 40: Plot of all eigenvalues at all times measured in the Hilgemann–Noble model (1987).

61



0 50 100 150 200 250 300
−200

−150

−100

−50

0

50

Time

E
xt

re
m

e 
E

ig
en

va
lu

e

Figure 41: Extreme real eigenvalues in the Hund–Rudy model (2004).

62



0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Time

E
xt

re
m

e 
E

ig
en

va
lu

e

Figure 42: Extreme imaginary eigenvalues in the Hund–Rudy model (2004).
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Figure 43: Extreme values of eigenvalues over time in the Hund–Rudy model (2004).
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Figure 44: Plot of all eigenvalues at all times measured in the Hund–Rudy model (2004).
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Figure 45: Extreme real eigenvalues in the Luo–Rudy model (1991).
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Figure 46: Extreme imaginary eigenvalues in the Luo–Rudy model (1991).
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Figure 47: Extreme values of eigenvalues over time in the Luo–Rudy model (1991).
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Figure 48: Plot of all eigenvalues at all times measured in the Luo–Rudy model (1991).
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Figure 49: Extreme real eigenvalues in the model of Jafari et al. (1998).

70



0 50 100 150 200 250 300
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time

E
xt

re
m

e 
E

ig
en

va
lu

e

Figure 50: Extreme imaginary eigenvalues in the model of Jafari et al. (1998).
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Figure 51: Extreme values of eigenvalues over time in the model of Jafari et al. (1998).
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Figure 52: Plot of all eigenvalues at all times measured in the model of Jafari et al. (1998).
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Figure 53: Extreme real eigenvalues in the model of Maleckar et al. (2008)
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Figure 54: Extreme imaginary eigenvalues in the model of Maleckar et al. (2008).
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Figure 55: Extreme values of eigenvalues over time in the model of Maleckar et al. (2008).
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Figure 56: Plot of all eigenvalues at all times measured in the model of Maleckar et al. (2008).
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Figure 57: Extreme real eigenvalues in the model of McAllister et al. (1975).
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Figure 58: Extreme imaginary eigenvalues in the model of McAllister et al. (1975).
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Figure 59: Extreme values of eigenvalues over time in the model of McAllister et al. (1975).
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Figure 60: Plot of all eigenvalues at all times measured in the model of McAllister et al. (1975).
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Figure 61: Extreme real eigenvalues in the Noble model (1962).
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Figure 62: Plot of all eigenvalues at all times measured in the Noble model (1962).
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Figure 63: Extreme real eigenvalues in the Noble–Noble model (1984)
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Figure 64: Extreme imaginary eigenvalues in the Noble–Noble model (1984).
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Figure 65: Extreme values of eigenvalues over time in the Noble–Noble model (1984).
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Figure 66: Plot of all eigenvalues at all times measured in the Noble–Noble model (1984).
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Figure 67: Extreme real eigenvalues in the model of Noble et al. (1991).
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Figure 68: Plot of all eigenvalues at all times measured in the model of Noble et al. (1991).
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Figure 69: Extreme real eigenvalues in the model of Noble et al. (1998).
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Figure 70: Extreme imaginary eigenvalues in the model of Noble et al. (1998).
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Figure 71: Extreme values of eigenvalues over time in the model of Noble et al. (1998).
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Figure 72: Plot of all eigenvalues at all times measured in the model of Noble et al. (1998).
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Figure 73: Extreme real eigenvalues in the model of Nygren et al. (1998).

94



0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

200

300

400

Time

E
xt

re
m

e 
E

ig
en

va
lu

e

Figure 74: Extreme imaginary eigenvalues in the model of Nygren et al. (1998).
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Figure 75: Extreme values of eigenvalues over time in the model of Nygren et al. (1998).
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Figure 76: Plot of all eigenvalues at all times measured in the model of Nygren et al. (1998).
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Figure 77: Extreme real eigenvalues in the model of Pandit et al. (2001).
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Figure 78: Plot of all eigenvalues at all times measured in the model of Pandit et al. (2001).
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Figure 79: Extreme real eigenvalues in the model of Pandit et al. (2003).
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Figure 80: Extreme imaginary eigenvalues in the model of Pandit et al. (2003).
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Figure 81: Extreme values of eigenvalues over time in the model of Pandit et al. (2003).

102



−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
9

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Real

Im
ag

in
ar

y

Figure 82: Plot of all eigenvalues at all times measured in the model of Pandit et al. (2003).
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Figure 83: Extreme real eigenvalues in the Puglisi–Bers model
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Figure 84: Extreme imaginary eigenvalues in the Puglisi–Bers model
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Figure 85: Extreme values of eigenvalues over time in the Puglisi–Bers model.
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Figure 86: Plot of all eigenvalues at all times measured in the Puglisi–Bers model
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Figure 87: Extreme real eigenvalues in the model of Sakmann et al. (2000) (Endocardial variant)
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Figure 88: Extreme imaginary eigenvalues in the model of Sakmann et al. (2000) (Endocardial variant)
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Figure 89: Extreme values of eigenvalues over time in the model of Sakmann et al. (2000) (Endocardial
variant)
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Figure 90: Plot of all eigenvalues at all times measured in the model of Sakmann et al. (2000) (Endocardial
variant)
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Figure 91: Extreme real eigenvalues in the model of Sakmann et al. (2000) (Epicardial variant)
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Figure 92: Extreme imaginary eigenvalues in the model of Sakmann et al. (2000) (Epicardial variant)
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Figure 93: Extreme values of eigenvalues over time in the model of Sakmann et al. (2000) (Epicardial
variant)
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Figure 94: Plot of all eigenvalues at all times measured in the model of Sakmann et al. (2000) (Epicardial
variant)
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Figure 95: Extreme real eigenvalues in the model of Sakmann et al. (2000) (M-cell variant).
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Figure 96: Extreme imaginary eigenvalues in the model of Sakmann et al. (2000) (M-cell variant).
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Figure 97: Extreme values of eigenvalues over time in the model of Sakmann et al. (2000) (M-cell variant).
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Figure 98: Plot of all eigenvalues at all times measured in the model of Sakmann et al. (2000) (M-cell
variant).
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Figure 99: Extreme real eigenvalues in the model of Stewart et al. (2009).
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Figure 100: Extreme imaginary eigenvalues in the model of Stewart et al. (2009).
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Figure 101: Extreme values of eigenvalues over time in the model of Stewart et al. (2009).
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Figure 102: Plot of all eigenvalues at all times measured in the model of Stewart et al. (2009).
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Figure 103: Extreme real eigenvalues in the model of Ten Tusscher et al. (2004) (Endocardial variant)
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Figure 104: Extreme imaginary eigenvalues in the model of Ten Tusscher et al. (2004) (Endocardial variant)
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Figure 105: Extreme values of eigenvalues over time in the model of Ten Tusscher et al. (2004) (Endocardial
variant)
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Figure 106: Plot of all eigenvalues at all times measured in the model of Ten Tusscher et al. (2004)
(Endocardial variant)
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Figure 107: Extreme real eigenvalues in the model of Ten Tusscher et al. (2004) (Epicardial variant).
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Figure 108: Extreme imaginary eigenvalues in the model of Ten Tusscher et al. (2004) (Epicardial variant).
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Figure 109: Extreme values of eigenvalues over time in the model of Ten Tusscher et al. (2004) (Epicardial
variant).
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Figure 110: Plot of all eigenvalues at all times measured in the model of Ten Tusscher et al. Epicardial
(2004) model.
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Figure 111: Extreme real eigenvalues in the model of Ten Tusscher et al. (2004) (M-cell variant).
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Figure 112: Extreme imaginary eigenvalues in the model of Ten Tusscher et al. (2004) (M-cell variant).
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Figure 113: Extreme values of eigenvalues over time in the model of Ten Tusscher et al. (2004) (M-cell
variant).
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Figure 114: Plot of all eigenvalues at all times measured in the model of Ten Tusscher et al. (2004) (M-cell
variant).
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Figure 115: Extreme real eigenvalues in the model of Ten Tusscher et al. (2006) (Endocardial variant).
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Figure 116: Plot of all eigenvalues at all times measured in the model of Ten Tusscher et al. (2006)
(Endocardial variant).
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Figure 117: Extreme real eigenvalues in the model of Ten Tusscher et al. (2006) (Epicardial variant).
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Figure 118: Plot of all eigenvalues at all times measured in the model of Ten Tusscher et al. (2006) (Epicardial
variant).
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Figure 119: Extreme real eigenvalues in the model of Ten Tusscher et al. (2006) (M-cell variant).
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Figure 120: Plot of all eigenvalues at all times measured in the model of the model of Ten Tusscher et al.
(2006) (M-cell variant).
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Figure 121: Extreme real eigenvalues in the Wang–Sobie model (2008).

142



0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

Time

E
xt

re
m

e 
E

ig
en

va
lu

e

Figure 122: Extreme imaginary eigenvalues in the Wang–Sobie model (2008).
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Figure 123: Extreme values of eigenvalues over time in the Wang–Sobie model (2008).
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Figure 124: Plot of all eigenvalues at all times measured in the Wang–Sobie model (2008).
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Figure 125: Extreme real eigenvalues in the model of Winslow et al. (1999).

146



0 50 100 150 200 250 300
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

E
xt

re
m

e 
E

ig
en

va
lu

e

Figure 126: Extreme imaginary eigenvalues in the model of Winslow et al. (1999).
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Figure 127: Extreme values of eigenvalues over time in the model of Winslow et al. (1999).
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Figure 128: Plot of all eigenvalues at all times measured in the model of Winslow et al. (1999).
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Figure 129: Extreme real eigenvalues in the model of Zhang et al. (2000).
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Figure 130: Extreme imaginary eigenvalues in the model of Zhang et al. (2000).
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Figure 131: Extreme values of eigenvalues over time in the model of Zhang et al. (2000).
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Figure 132: Plot of all eigenvalues at all times measured in the model of Zhang et al. (2000).
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