
The University of Saskatchewan
Department of Computer Science

Technical Report #2009-02

Improved MESH efficiency via parallelization and code

optimization

Chris B. Marsh1,2, Bruce Davison3, and Raymond J. Spiteri2

1Centre for Hydrology, Department of Geography, University of Saskatchewan
2Simulation Research Laboratory, Department of Computer Science, University of

Saskatchewan
3National Hydrology Research Centre, Saskatoon, Saskatchewan

October 2009

1

Contents

1 Introduction 3

2 Profiling 4

3 Hot-spot functions and proposed changes 6

3.1 MAIN . 6
3.2 CLASSS and CLASSG . 9

3.2.1 Parallelization . 9
3.3 FLXSURFZ . 10

3.3.1 Parallelization . 11

4 Code clean up 11

5 OpenMP 12

6 Hardware and software survey 12

7 Interpretation of the survey 13

8 Code Modifications 13

8.1 Updates to CLASS code . 13
8.2 Instabilities . 13
8.3 Floating-Point Precision . 16
8.4 Removal of CLASSS and CLASSG . 17
8.5 Other improvements . 20
8.6 Known problems . 20

9 Run time improvements 20

9.1 Speedup between MESH 1.3.2 and 1.3.3 . 20
9.2 Benchmark results . 22
9.3 Intel ifort percent speedup . 23
9.4 gfortran . 24
9.5 g95 . 27

10 Conclusion 27

2

Abstract

Currently, advances in hydrological science are based on field data collection, computer
modeling, and analysis of these types of data in order to draw scientific conclusions about
physical processes and to perform “what-if” scenarios to aid in scientific prediction. However,
as the modeling domains become larger or the model resolution becomes smaller, ever greater
increases in computational effort are required. In addition to the limits on computer processing
power currently available, other issues, such as round off errors, can present themselves when
solving equations numerically. Although current computing power continues to slowly increase,
much greater performance gains can be obtained by taking advantage of multi-core, multi-
processor computer architectures. Completely utilizing modern computational methods can
help to further scientific advancement. Code optimizations are important for future work that
incorporates more computationally expensive physics into the model. By decreasing the run
time, model users can more quickly iterate over calibration parameters, allowing more time to be
spent on the science. In this work, Environment Canada’s model Modélisation Environmentale
Communautaire (MEC)–Surface and Hydrology (MESH) 1.3, which is based on the Canadian
Land Surface Scheme (CLASS), was examined via code profiling to determine the slowest
portions of code. Focus was given to determining whether the code could be adapted for
parallelism targeting shared-memory processors and whether various code optimizations could
be made to the code structure. Initially, the four slowest functions, which comprised about
50% of the run time, were examined. Two, responsible for internal array management, were
removed via code restructuring. Further code optimizations were performed via introduction of
loop-level parallelism. Results show a 37% speed improvement due to code restructuring and
a 47% speed improvement when run with two threads. These results demonstrate sufficient
improvement to suggest that parallelism and further code optimization would be a fruitful
approach to apply to other portions of the model. However, performance testing showed that
the code is still dominated by the serial sections. Through regression testing it was observed
that difference compilers produced different results with the same input data. These instabilities
were quantified via a relative error which indicated that the differences were larger than what
would have been expected due to stable accumulation of round off error. Further investigation
into these instabilities is required to properly quantify their effects on the model output.

1 Introduction

To use a numerical hydrological model such as MESH for both scientific and operational purposes,
it is a great advantage if the model run time is as short as possible while still providing scientifically
meaningful results. In many cases, hydrological models require extensive calibration, which may
entail thousands of model runs, before the model can be run in an experimental fashion. In addition,
the model may be used to simulate macro- or continental-scale river basins, or it may be run for
many decades for climate-change studies. In fact, if the model run time is too long, it may not
be possible to use the model for the required purpose. Currently, run time is often reduced by
utilizing smaller research domains, larger time steps, smaller temporal periods, a limited number
of calibration runs, multiple model instances concurrently with different calibration parameters,
limited land cover types, and/or faster computer hardware. However, some of these techniques
(decreased model domain resolution, for example) can result in a loss of model predictive power
and therefore should be avoided whenever possible. The utilization of faster computer hardware
has been the standard response to date; however, although transistor counts are increasing in
accordance with Moore’s Law, overall clock speeds of modern computers have not increased at the
rate previously seen due to heat dissipation as well as other physical constraints (Herlihy and Shavit ,

3

2008). Therefore, relying on increased clock speed to decrease model run time is no longer a viable
option. Recently microprocessor manufacturers such as Advanced Micro Devices, Inc. (AMD)
and Intel have begun to ship Central Processing Units (CPUs) with multiple execution “cores”,
as well as developing multi-CPU, shared-memory platforms that communicate directly through
shared hardware caches (Herlihy and Shavit , 2008). These multi-CPU, multi-core platforms are
able to exploit parallelism by utilizing multiple processors (and/or cores) to decrease execution
time. Through such exploitation, problems can be broken down into smaller problems that are
solved concurrently. Some problems do not lend themselves to parallelization, while others do.
Pietroniro et al. (2007) examined this briefly and stated that because “. . . [MESH model] domain is
broken into subareas and the land-surface model is run independently on each area”, MESH lends
itself well to parallelization.

In this work, MESH 1.3 was examined via code profiling to determine the slow portions of code
(termed “hot spots”). Focus was given to determining whether the code, as currently written,
could be adapted for parallelization targeting shared-memory processors and whether various code
optimizations could be made to the code structure. These optimizations are important for future
work that incorporates computationally expensive physics into the model. Given that the MESH
usage model requires the user to calibrate the model via multiple model runs, time lost to this
stage can hinder the results if the model information cannot be applied in a timely fashion. By
decreasing the run time, model users can quickly iterate over calibration parameters allowing
more time to be spent on the science rather than waiting for the code to finish.

2 Profiling

Code profiling was utilized to determine the time spent in each segment of the MESH code during a
typical model run. MESH version 1.3 standalone (to be released Summer/Fall 2009) was compiled
with gfortran1 version 4.5.0 20090421 (experimental) [trunk revision 146519] under Ubuntu Linux
8.10 and profiled with Intel V-Tune2 version 9.1 Update2-226 for Linux. Third-level optimization
(O3) was used. The example basin BWATER was utilized with a total profiling run time of ap-
proximately 50 minutes on a CoreDuo laptop running at 1.2GHz with 2GB of RAM and a 5400rpm
hard drive. This was selected as a worst-case modeling platform; see Section 6 for justification.

The profiling results are shown in Table 1.

1http://gcc.gnu.org/fortran/
2http://software.intel.com/en-us/intel-vtune/

4

Table 1: Profiling results: overall system

42% MESH

22% libm (math routines)

6% libgfortran (runtimes)

70% total

+ 30% other linux process (kernel activity, etc)

100% of run time

Breaking the MESH results into a per-function list provided the results shown in Table 2.

Table 2: Profiling results: MESH on a per-function basis

MAIN 18%

FLXSURFZ 15%

CLASSS 12%

CLASSG 8%

= 53% of MESH

GRDRAN 6.8%

TPREP 3.9%

APREP 3.8%

TMCALC 2.5%

WPREP 2.4%

WAT_DRAIN 2.3%

CLASST 2.2%

TSOLVC 1.95%

CLASSW 1.83%

= 27% of MESH

total of above functions = 80% of MESH

A full explanation of these functions can be found in the CLASS 3.4 documentation; however a
brief overview of the top four hot spots follows for the reader’s convenience.

MAIN is the model driver. It is responsible for loading configuration files, reading forcing data,
writing output data, and running the main computation loop that iterates over the temporal model
domain. It is the entry point of MESH.

FLZSURFZ estimates a stability parameter, the Richardson Bulk number, and uses it to
estimate a corresponding Monin–Obukhov length that corresponds to the stability parameter. This
is solved for via the Newton–Raphson method.

CLASSS “scatters” the 2D arrays into 1D vectors. The rationale behind this is that it is faster
to traverse sequential memory than it is to access “2D” memory.

5

CLASSG “gathers” the 1D vectors into 2D arrays.

3 Hot-spot functions and proposed changes

Over 50% of the MESH run time can be accounted for in four functions, MAIN, FLXSURFZ,
CLASSS, and CLASSG. Below, each function is examined in detail, outlining where they can be
improved. These improvements are examined within the context of the x86 and x64 shared-memory
architectures.

3.1 MAIN

Figure 1 outlines the general program flow of routine MAIN. MAIN begins by reading in the input
configuration files and initializing variables (CLASSB and CLASS_BHYD) that define the model
domain. Each iteration of the main loop (200 continue) begins by reading in the current time step’s
meteorological forcing data, reservoir values, and stream flow. CLASSG gathers all of the forcing
data and computed (from the previous time step, if applicable) values into 1D vectors from the 2D
arrays. CLASSZ/A,T,W,Z are run using the 1D vectors. CLASSS scatters the 1D vector into the
2D arrays for use with wf_route and the current time step output routines at the end of the main
loop.

It is important to note that the “vectorization” performed by CLASSS and CLASSG is not the
data parallel vectorization associated with Single Instruction Multiple Data (SIMD) instruction
sets such as SSE. Rather, it is literally the transformation of 2D arrays into 1D arrays, commonly
referred to as “vectors”.

6

Figure 1: Program flow of MAIN

7

The primary task of the routine MAIN is to control data input/output (I/O), and its performance
is bound to the underlying hardware, where and increase in storage medium performance translates
into faster overall performance. However, there are still various optimizations that can be performed,
specifically in the main loop. Disk input and output transfer rates and access latency are bound to
the physical limitations of the hard drive because it is essentially the only mechanical component
of a modern computer. Sequential reads and writes to a hard drive are significantly faster than any
random access reads or writes. Therefore, care should be taken to limit the random I/O requests.
Although this is done in the MAIN setup functions where entire files are read in sequence, each
iteration of the main loop has random disk I/O requests that are performed to read in the current
time step’s forcing data. A proposed solution to this problem is as follows.

Instead of reading in the data at each time step, the meteorological forcing data are read into
a buffer before running the main loop. This results in a reduction of disk I/O during the main
loop. However, because the forcing data can be gigabytes in size, an algorithm that can allocate a
maximum buffer size and subsequently refill it as needed needs to be developed so as to limit the
total number of random read/write requests. For example, if the computer running the model has
2GB of RAM and 6GB of forcing data is needed, the buffer is taken to be 1GB and is filled a total
of 6 times. The disk output performed at the end of the main loop can be buffered in a similar
fashion, allowing for large sequential writes, increasing data throughput.

This solution is presented below in Algorithm 1.

Algorithm 1 Buffered input for MAIN
Read in configuration data

Initialize variables

Determine maximum input buffer size

Allocate and fill buffer with forcing data

Determine maximum output buffer size

Allocate output buffer

200 start of main loop

if buffer is not empty then

proceed to read from buffer

else

if not at end of simulation period

fill buffer from forcing files

end if

end if

end 200

The problem with this approach is determining a correct buffer size for the I/O. Care must be
taken that buffers are not larger than total physical memory or else paging begins, thus negating
any performance gains. A memory manager algorithm would have to be able to handle other
programs utilizing physical memory and dynamically adjust the buffers to limited paging. A better
approach might be to utilize smaller fixed size buffers so as to minimize the risk of paging or memory
shortages. User-configurable buffers of about 100MB are likely ideal. It would limit the disk I/O

8

per iteration, and if the user knows there is sufficient memory, they can allocate a large buffer at
their discretion. Further work is required to determine an optimal buffer size.

3.2 CLASSS and CLASSG

Combined, the two routines CLASSS and CLASSG account for 20% of the total run time. Although
their intent is to reduce access to memory, they end up greatly increasing the model run time. In
examining Figure 1, it can be seen that only the subroutines wf_route and the output routines
require 2D arrays as input. A proposed change is illustrated in Figure 2, where the gather routine
has been placed before the start of the main loop, the scatter routine is completely removed, and
input time step values, wf_route, and time step output have all been rewritten to utilize 1D vectors.

Figure 2: Modified MAIN loop to remove CLASSS and CLASSG

3.2.1 Parallelization

CLASSG has iteration-independent loops that can be parallelized via an API such as OpenMP. It
should be noted that with multiple threads requesting memory, there must be sufficient memory
bandwidth for this approach to result in a net performance gain.

Further work is require in order to determine when parallelization of these loops is inefficient.

9

3.3 FLXSURFZ

This function is called many times and highlights one of the larger problems currently present in
MESH 1.3. The subroutine logic is outlined in Algorithm 2

Algorithm 2 FLXSURFZ subroutine control logic

let e be the number of elements in 1D domain comprised of all

the areas over which to solve. Equal to IL2 in the code.

for each i in e

Calculate Bulk Richardson number (Rib)

User Rib to estimate 1/L (Monin-Obukhov length)

end for

for 1 to 3

for each i in e

Calculate new approximation for 1/L via Newton-Raphson in 3 iterations

end for

end for

for each i in e

Calculate 1/L and stability functions from log-linear profile

end for

The inefficiency presented in Algorithm 2 is that 3 ∗ e iterations are done whereas it can be
solved in e iterations. Algorithm 2 can be rewritten as shown in Algorithm 3.

10

Algorithm 3 Modified FLXSURFZ
let e be the number of elements in 1D domain comprised of all the

areas over which to solve. Equal to IL2 in the code.

for each i in e

if first iteration

Calculate Bulk Richardson number (Rib)

User Rib to estimate 1/L (Monin-Obukhov length)

end if

for 1 to 3

Calculate new approximation for 1/L via Newton-Raphson in 3 iterations

end for

Calculate 1/L and stability functions from log-linear profile

end for

There appears to be a bug in the implementation of the for 1 to 3 loop in FLXSURFZ as
it currently exists in MESH 1.3. The paper cited in the code[(Sharan and TVBPS)] indicates
that 2 iterations should be necessary for convergence to the root. However, the do loop performs
3 iterations, and there is a check immediately before the Newton–Raphson step, which does not
update the 1/L approximation on the third iteration. It needs to be determined if this is intentional.
Otherwise, the last iteration can be removed, further limiting redundant work.

As stated above, Algorithm 2 is an example of the redundancy present in many of the subrou-
tines. The changes made here can also be applied to the other routines, such as CLASSZ, CLASSA,
CLASSB, CLASSW, and wf_route.

3.3.1 Parallelization

Due to the iteration-independent nature of FLXSURFZ, the main loop can be parallelized via an
API such as OpenMP. This parallelization strategy is applicable throughout the MESH and CLASS
code because many loops are iteration independent.

4 Code clean up

Throughout the code, there are areas of dead code that are consuming CPU cycles without any
purpose. Examples of this are:

• The loop that begins at line 3044 in MESH_DRIVER. It does nothing and should be removed.

• The loop with dead code in CLASSG.

Such pieces of code should be commented out or removed entirely because they add to the compu-
tational load.

11

5 OpenMP

It is proposed that the loop parallelization is done with OpenMP3 which, as per the OpenMP
website, is

. . . [an] Application Program Interface (API) [that] supports multi-platform shared-
memory parallel programming in C/C++ and Fortran on all architectures, including
Unix platforms and Windows NT platforms. Jointly defined by a group of major com-
puter hardware and software vendors, OpenMP is a portable, scalable model that gives
shared-memory parallel programmers a simple and flexible interface for developing par-
allel applications for platforms ranging from the desktop to the supercomputer.

It is proposed that this API is utilized due to its simplicity for integration into the current code
base. As well, because the OpenMP compiler directives are specialized comments (in Fortran), if
the compiler does not support the OpenMP directives they are ignored.

6 Hardware and software survey

Because MESH may be run on a variety of hardware configurations, a hardware survey of six of
the main MESH user groups was conducted. The survey questions asked about CPU type and
speed, RAM, hard drive size and speed, operating system, and the compiler brand. The results
indicate that the average CPU speed is about 2GHz, dominated by Intel Core2Duo CPUs, with
only two users reporting Intel Quad Core CPUs. A single user reported a 4x AMD Opteron cluster.
Windows XP and Vista were the only operating systems used other than the HP Linux OS for the
Opteron cluster. Average RAM was in the 2–3GB range. A single user reported 512MB–1GB of
RAM. Because most users are utilizing desktops, 7200rpm hard drives were the majority; however
a single 5400rpm and a single 4200rpm drive were also reported — these users were conducting
model runs on laptops. The compilers used varied considerably and included:

• Compaq Visual Fortran 6.6.c

• Intel Visual Fortran 10

• Intel Visual Fortran 11

• Portland Group F90

• Unknown

• None

The user who reported “none” was using a precompiled binary. We note that Intel purchased the
Compaq Visual Fortran compiler, and as such, the Compaq Visual Fortran compiler can be regarded
as an old version of Intel’s Visual Fortran Compiler. Only one of these compilers, the Intel Fortran
Compiler, has support for OpenMP 3.0. We are currently unsure whether the other compilers
support OpenMP because the users did not know when questioned and time constraints limited
further investigation.

3http://openmp.org/wp/

12

7 Interpretation of the survey

The survey demonstrates that the vast majority of users are running MESH on limited hardware.
Although it was not asked, we believe it to be a fair assumption that the RAM speed is also
limited (given the limited hardware reported). This can be a problem for highly sustained memory
read/writes as well as random access times. As well, more end-user education regarding compilers
is needed. Some of the compilers reported are no longer in production or no longer supported,
rendering them essentially obsolete. It is probably not well known in this user community that
large performance benefits can be obtained by using newer, optimizing compilers. Because most of
the researchers are using Intel CPUs, using the Intel Fortran Compiler (which produces optimized
code for Intel CPUs) is expected to result in large performance increases. Testing showed that it
is possible to halve the run time when moving from an open-source compiler such as g95 to the
Intel Fortran Compiler when running on Intel brand CPUs. Becuase most of these users are using
shared-memory architectures, they are able to benefit from OpenMP parallelized loops. However,
OpenMP requires compiler-level support that requires newer, supported compilers. Many of the
old compilers have limited or no support for OpenMP and no support for the new OpenMP 3.0
specification. It is probably safe to assume that the optimizations provided by the “new”, “modern”
compilers are considerably more efficient than the “older” compilers.

8 Code Modifications

Modifications were carried out to the MESH 1.3 class base to bring the internal CLASS subroutines
up-to-date as well as to increase performance as per the suggestions in Section 3.

8.1 Updates to CLASS code

There have been updates to the core CLASS code since MESH 1.3 was finalized. This CLASS
update was termed CLASS 3.4 revised abbreviated to CLASS 3.4r. A subsequent update from the
Pollux machine was made in May 2009. The revised code (3.4r) was integrated into MESH 1.3 at
the version number 1.3.1. The code from Pollux was integrated at the version number 1.3.2. The
modifications described below increased the version to MESH 1.3.3.

8.2 Instabilities

In order to verify that the changes integrated into the MESH code base during the implementation of
the OpenMP commands did not contain bugs, it is important to obtain reference output prior to the
code changes. In this way, the output from the new code can be compared to that of the old code.
During the creation of this reference output, it was observed that different compilers produced
different results with errors larger than single-precision round off. It was hypothesized that the
algorithms for solving the equations used in MESH were inherently unstable, and that the small
perturbations introduced during the reordering of instructions by the compiler were responsible for
producing the different output. It was assumed that the compiler that had the greatest chance of
producing instructions that would limit the perturbations would be the commercial Intel Fortran
compiler. In order to fully quantify this behaviour the following approach was taken:

13

1. CLASS 3.4 was compiled with the Intel compiler with no optimizations (O0) and a strict
floating-point flag. This was done to reduce as much instruction reordering as possible. This
was taken as the known or reference solution.

2. CLASS 3.4 was compiled with g95 and gfortran in a very similar configuration (O0, etc.).
This was taken to be an experimental solution.

3. The absolute difference |experimental − known|, was computed between the g95 and Intel
results and the gfortran and Intel results.

4. The relative difference experimental−known

known
was computed between the g95 and Intel results

and the gfortran and Intel results.

5. Graphs were constructed that showed that there was accumulation of error.

6. Steps 1–5 were repeated for CLASS 3.4r showing the same results.

7. CLASS 3.4r was incorporated into MESH 1.3, under the revision MESH 1.3.1

8. Steps 1–5 were run for MESH 1.3.1, showing the same instabilities.

The results show that the instabilities are present in the CLASS output (however MESH specific
subroutines did not seem to be affected). An example of the instabilities is presented below in
Figure 3. The variables presented are TG1, TG2, and TG3, the three soil layer temperatures,
averaged to daily values. Figure 3 is the relative difference between the output from the gfortran
and g95 compilers compared to the Intel Fortran compiler.

14

Figure 3: Instability from CLASSOF2 variable TG1–3 — relative differences. X-axis is offset from
day 135 (the simulation start day).

15

8.3 Floating-Point Precision

All of MESH (and the internal CLASS code) is written using single-precision data types. This can
lead to accumulation of round off errors that can be mitigated by moving to double precision. This
is highlighted in Figure 4, which compares the relative difference between compilers using double
precision (64bit) and single (real) (32bit) precision. As is evident, the move towards double precision
helped to mitigate the round off errors. In the context of most MESH users and researchers, there
is no reason not to be using double precision. For most compilers, there are flags which can override
the real data type, so that double precision can be used without any modifications to the code.

Figure 4: Double precision versus single precision — relative difference. X-axis is offset from day
135 (the simulation start day). The bottom plot shows the top plot in greater detail to more
accurately see the small differences.

16

8.4 Removal of CLASSS and CLASSG

As indicated in section 3.2, CLASSS and CLASSG are responsible for reorganizing the internal
arrays from a 2D version to a 1D version. This results in a substantial runtime performance impact.
Upon examination of the code, it was determined that few code sections were utilizing the 2D arrays
and that the code could be partially rewritten to remove CLASSS and CLASSG. However, due to
the mixed code base, there is a requirement that as little code as possible be changed to allow for
easy integration of new CLASS features with the existing MESH code. Therefore the following
criteria were established:

• Divide the code into five separate sections

1. Initialization, pre 200 continue

– This section contains most of the model I/O required for setting up a MESH run.

– It reads the input data into the 2D arrays for easy debugging.

2. Post 200 continue, pre CLASSG

– This section is from the start of the main loop to to start of CLASSG.

– This is where the forcing data are read in.

– The data are read into 2D arrays

3. Post CLASSG, pre CLASSS

– This is where all the CLASS* subroutines are called.

– These operate on the “gathered” 1D vectors.

4. Post CLASSS, pre 200 end

– This is where wf_route is run and output is written to disk

– Operates on 2D arrays

5. Post 200 end to end

– This is where the finalized output is generated.

– Operates on the 2D arrays.

17

• For each sections above, the following modifications were performed

1. Move CLASSG and GATPREP above the 200 continue.

2. Because some input is done in this section, leave it as is (few variables need to be
“gathered”). Therefore a new “gather” routine was created called “gather” that only
gathers the few arrays that are modified in this section into the 1D vectors. In addition
some arrays need to be zero-ed out each iteration.

3. No modification

4. Remove CLASSS. Rewrite all the nested loops of the form:

DO I =1, NA
DO M=1, NMTEST

Into:

DO I=1, NML

And replace all *ROW variables with the *GAT equivalents.

Some loops require looping over NA, so utilize ilmos(I) for the correct indexing.

5. Following the same method in point four, rewrite the loops to operate on the 1D vectors
(*GATs instead of *ROWs).

These changes allow large sections of code to maintain their structure while incorporating the new
changes. All of the input remains in 2D form for easier debugging, and because of the iteration
sequence, the output maintains its form. The addition of the minor gather routine preserves the
logic at the start of the main loop and provides little overhead. The new code structure is shown
below in Figure 5.

18

Figure 5: MESH 1.3.2 updated control flow

19

8.5 Other improvements

Other improvements and optimizations were done in addition to the above section:

• Collapsed the three loops in FLXSURFZ into one loop and parallelized it.

• Parallelized all NML loops in mesh_driver.f90.

• Removed dead code in CLASSG.

• Parallelized NML loop in gather and CLASSG.

8.6 Known problems

Currently Green Kenue (formerly EnSim Hydrologic) output and save/restore state subroutines do
not work as anticipated. These routines are only called if certain flags are set and did not impact
the benchmarking results.

9 Run time improvements

9.1 Speedup between MESH 1.3.2 and 1.3.3

MESH 1.3.2 was benchmarked against MESH 1.3.3. They were run on an Intel Core2Quad Q6600
at 3.2GHz with 8GB of DDR2 888MHz RAM. Each build was run five times for the BWATER
MESH example and the fastest of these five was taken. The following compilers were used:

• gfortran version 4.5.0 20090421 (experimental) [trunk revision 146519]

• g95 version 0.92 (GCC 4.0.3 May 7 2009)4

• Intel Fortran (ifort) 11.1.038 5

The first two compilers were run under Cygwin6 1.5.25-15.

Because three different compilers were used, the optimization flags present for one compiler may
not be present for another. In such cases, the flag was still used to create a best-case scenario.

The flags used for the ifort, gfortran, and g95 compilers are shown in Table 3, Table 4, and Table
5 respectively.

4http://www.g95.org/
5http://software.intel.com/en-us/intel-compilers/
6http://www.cygwin.com/

20

Table 3: Optimizations for ifort
Flag Description

O3 Level 3 optimization
Og Global optimization

QxSSSE3 Core2Quad extended SSE3
QaxSSSE3 Core2* SSE3 optimizations
arch:SSE3 Optimize and generate SSE3 code that runs on both Intel and AMD architecture.

assume:buffered_io I/O accumulates in a buffer and is written out. No code modification.
heap_arrays0 Allocate all arrays on heap. See note below.

Qip Inter-procedural optimization
Openmp Enable processing of OpenMP directives
fp:strict Strict floating point

Qfp-speculation=off Turn off floating-point speculation

Note 1: In order for MESH 1.3.x to run without crashing, the flag heap_arrays0 must be enabled
on the ifort compiler; otherwise all of the arrays are declared on the stack instead of the heap,
resulting in a stack overflow. It requires further investigation to see if this flag had an effect on the
overall run time. There does not appear to be an equivalent flag for the GCC compilers.
Note 2: On this test platform, the prefetch optimization in the ifort compiler degrades performance
significantly and should not be used.

Table 4: Optimizations for gfortran
Flag Description

O3 Higher level optimizations
ftree-vectorize Allow vectorization (turned on under O3)

msse3 SSE3 vectorization
fopenmp Process OpenMP directives

Table 5: Optimizations for g95
Flag Description

O3 Higher level optimizations
ftree-vectorize Allow vectorization (turned on under O3)

msse3 SSE3 vectorization

Note: There is no OpenMP support for the g95 compiler.

The speed up was then calculated as

T imev1.3.2 − T imev1.3.3

T imev1.3.2

× 100%.

21

9.2 Benchmark results

Table 6 shows the results of this benchmarking.

Table 6: Run time improvements
Version Compiler Run Time Number of Threads

1.3.3 ifort 4m8.5s Auto
1.3.3 gfortran 16m2.5s Auto

1.3.3 ifort 4m7.7s 4
1.3.3 gfortran 16m2.7s 4

1.3.3 ifort 4m12.6s 3
1.3.3 gfortran 16m28.0s 3

1.3.3 ifort 4m22.5s 2
1.3.3 gfortran 17m7.2s 2

1.3.3 ifort 5m12.9s 1
1.3.3 gfortran 19m9.6s 1
1.3.3 g95 19m3.8s 1

1.3.2 ifort 8m20.2s 1
1.3.2 gfortran 17m34.6s 1
1.3.2 g95 22m0s 1

Figure 6 shows a comparison of all the run times.

22

Figure 6: Inter-compiler and Thread runtime comparison

9.3 Intel ifort percent speedup

Between versions 1.3.3 and 1.3.2 of MESH, a significant speed improvement was realized when using
the Intel Fortran compiler.

best MESH 1.3.2 run time = 8.3 minutes
best MESH 1.3.3 run time = 5.2 minutes

and consequently the performance speed up is

T imev1.3.2 − T imev1.3.3

T imev1.3.2

× 100% =
8.3 − 5.2

8.3
× 100% ≈ 37%.

If however, we count the speed up associated with moving to just two cores, a very common
situation as indicated on the hardware survey (Section 6), the speed up is:

MESH 1.3.2 run time with 1 thread = 8.3 minutes;
MESH 1.3.3 run time with 2 threads = 4.4 minutes;

23

and consequently the performance speed up is

T imev1.3.2 − T imev1.3.3

T imev1.3.2

× 100% =
8.3 − 4.4

8.3
× 100% ≈ 47%.

Figure 7 shows this in a graphical form. Percent speed up is measured based on 1 thread, that is,
the percent speed up gained from adding multiple threads (using MESH 1.3.3).

9.4 gfortran

The runtime improvements associated with the gfortran compiler are certainly not as substantial
as that of the ifort compiler. The speedup between MESH 1.3.2 and MESH 1.3.3 is:

best MESH 1.3.2 run time = 17.58 minutes
best MESH 1.3.3 run time = 19.16 minutes

Timev1.3.2−Timev1.3.3

Timev1.3.2

× 100% = 17.58−19.16
17.58

× 100% ≈ −9%

This result is undeniably surprising, and currently there is no explanation for why the new build
in single-threaded mode causes a performance decrease. The benchmarks have been rerun,
recompiled with no OpenMP support, yet the results remain the same. This is currently under
investigation. The addition of multiple threads leads to a disappointing performance gain
compared to Intel’s ifort compiler:

best MESH 1.3.2 run time with 1 thread = 17.58 minutes;
best MESH 1.3.3 run time with 2 threads = 17.10 minutes;

and consequently the performance speed up is

T imev1.3.2 − T imev1.3.3

T imev1.3.2

× 100% =
17.58 − 17.1

17.58
× 100% ≈ 3%.

Utilizing four threads results in the following:

best MESH 1.3.2 run time with 1 thread = 17.58 minutes;
best MESH 1.3.3 run time with 4 threads = 16.05 minutes;

and consequently the performance speedup is

T imev1.3.2 − T imev1.3.3

T imev1.3.2

× 100% =
17.58− 16.05

17.58
× 100% ≈ 9%

The performance scaling with respect to number of threads is shown in Figure 8.

24

Figure 7: MESH 1.3.3 (ifort) Mulithreaded Speedup.

25

Figure 8: MESH 1.3.3 (gfortran) Mulithreaded Speedup.

26

9.5 g95

The g95 Fortran compiler does not provide support for the OpenMP directives. Therefore it is not
possible to measure the speed up obtained from multiple threads. However, it is still possible to
examine the performance speedup when comparing a single thread:

best MESH 1.3.2 run time = 22.00 minutes;
best MESH 1.3.3 run time = 19.06 minutes;

and consequently the performance speedup is

T imev1.3.2 − T ime1.3.3

T imev1.3.2

× 100% =
22.0 − 19.06

22.0
× 100% = 13.3%.

10 Conclusion

Profiling of MESH has been conducted of MESH 1.3 under Ubuntu Linux 8.10 with Intel VTune.
Significant performance bottlenecks were found in the FLXSURFZ, CLASSS, and CLASSG sub-
routines as well as in MAIN. MAIN’s performance bottleneck is mostly attributed to intensive I/O
routines at each time step. An overall pattern throughout much of MESH (specifically the CLASS
routines) is a duplication of work by having too many iterations due to redundant loops and is ex-
emplified by FLXSURFZ (Algorithm 2). These multiple loops can be merged into one loop, which
can be easily parallelized using OpenMP, provided the loop iterations are independent (as is much
of the current code). CLASS and CLASSG are only needed for select sections of MESH which
can be rewritten to handle 1D vectors. CLASSS can then be completely eliminated and CLASSG
moved above the main iteration loop, significantly decreasing the MESH run time. A buffered
I/O approach for MAIN was discussed that could be used to reduce the number of random disk
input requests. Compiler settings were examined, and the move towards the high-end Intel Fortran
compiler can net between a 2x and 3x speed improvement depending on the enabled hardware
optimization. Numerical stability was discussed, and it was found that using double precision can
mitigate most of the stability problems. However, there exists locations in the code where improved
stability can only be achieved via improved numerical methods. For the “average” MESH user, we
could think of no reason why double precision should not be used.

27

References

Herlihy, M., and N. Shavit (2008), The art of multiprocessor

programming, Elsevier.

Pietroniro, A., V. Fortin, N. Kouwen, C. Neal, R. Turcotte, B. Davison,

D. Verseghy, E. D. Soulis, R. Caldwell, N. Evora, and P. Pellerin

(2007), Development of the MESH modelling system for hydrological

ensemble forecasting of the laurentian great lakes at the regional

scale, Hydrological Earth Systems Science, 11, 1279–1294.

Sharan, M., and R. TVBPS (), Aditi (2003) On the bulk Richardson number

and flux-profile relations in an atmospheric surface layer under weak

wind stable conditions, Atmos Environ, 37, 3681–3691.

28

