
The University of Saskatchewan
Department of Computer Science

Technical Report #2006-03

1

SoftSphere: Dynamic Visualization of Coupling in Java
Programs

Andrew Sutherland
Software Research Lab

Department of Computer Science
University of Saskatchewan
andrew.sutherland@usask.ca

ABSTRACT
The creation of an application for the effective visualization
of software is a task requiring several steps. The steps
required and the means for doing so are discussed. A
prototype visualization application for visualizing software
coupling is presented along with an assessment of the
techniques presented therein. 3-D rendering is offered as
the visualization medium for the prototype and answers are
sought to a number of questions regarding the usefulness of
this medium for visualizing software.

AUTHOR KEYWORDS
Software visualization, source code mining, three-
dimensional visualization

1 INTRODUCTION
The development and maintenance of large software
systems often involves performing complex tasks that
require in-depth understanding and knowledge of the
underlying code, documentation, and other design artifacts.
The use of visual aids can simplify these tasks by removing
the necessity to remember large amounts of information all
at once.

Visualizations can be used to represent many different
qualities or properties of software. Software visualizations
allow a user to view various aspects of a system such as
how a system evolves over time [4][18], the collaboration
between its developers [14], execution of code at run-time
[10], the logical structure of the software [2], or metrics
pertaining to the code itself [5]. The purpose of
representing these various aspects of software visually is to
allow the user to recognize patterns and non-trivial
relationships that without visual aids would have been too
complex to recognize otherwise. For example, a program
that visualizes collaboration between developers on a
project may allow a manager to identify a particular
developer that contributes to coupling between many of the
components she has worked on. This conclusion may not
have been as easily derived by looking at logs or written
reports of what was changed.

The successful communication of information visually
relies on determining the correct metaphor that is used to
map software facts to visual entities.

1.1. Basic Stages of Visualization
Ware [17] states that all types of information visualization
include four basic stages:

! The collection and storage of the data itself

! The preprocessing designed to transform the data into
something we can understand

! The display hardware and the graphics algorithms that
produce an image on the screen

! The human perceptual and cognitive system

The stages are interdependent on one another. For
example, if the data collected and stored is incomplete or
not suitable to the type of visualization required, the
resulting visualization produced from the subsequent stages
may not have the desired effect. Thus, in order to
maximize the effectiveness of the visualization, it is
necessary to take into account all four of these stages when
creating a visualization application.

An initial implementation, SoftSphere, was constructed as
an experimental platform on which various visualization
techniques could be used. This paper discusses what
visualization techniques were incorporated into the
application and the basis behind them. Observations were
made to determine what techniques could be improved and
what additional techniques could be introduced for a more
effective visualization.

3D rendering was the medium used to build the
visualization. There is encouraging evidence that rendering
in 3D does provide certain benefits [15], however it is still
unclear what effects and techniques should be incorporated
into a 3D visualization in order to maximize understanding.
One of the goals of creating this application was to
determine if 3D rendering is appropriate for representing
software.

2

2 RELATED WORK
Building an effective visualization requires familiarity with
a number of related topics. There are a number of areas
that have strong ties to software visualization. This section
introduces some of the prerequisite knowledge necessary to
construct an effective visualization application.

2.1. Data Mining
Ware’s first two stages of visualization involve collecting
and storing the necessary information for visualization,
followed by the transformation of the information into
something we can understand. Presented here is an
overview of how some visualization applications implement
these first two important steps by mining data from CVS
repositories and transforming the data into a representation
that can be easily understood.

CVS (Concurrent Versioning System) is the version
management method used for many open source projects.
The information stored in CVS repositories contains
information pertaining to file administration such as when
files were last altered and by whom, and other information
regarding what was changed with each commit. These
qualities makes CVS repositories attractive targets for data
mining as many types of useful information spanning a long
time period can be found in a single, accessible place.

softChange [5][6] is a one such application that uses a CVS
repository as one of its sources for software evolution
information.

One of the difficulties in working with CVS repositories is
that CVS does not keep track of what individual files were
modified concurrently. The creators of softChange stress
that it is important to know what files were modified at the
same time, as concurrent change indicates a relationship
between these files. softChange denotes a modification
request (MR) as the set of files committed simultaneously
in a single CVS commit. The application then analyzes
source code contained in the files of each MR, and creates a
factbase by listing the function, methods, and classes that
have been added, modified, or removed from one MR to the
next. softChange also cross-references these facts with
other sources such as Bugzilla reports and mail archives in
order to obtain a more concrete factbase.

The drawback to the method used by softChange is that is
unlikely that a modification request by their definition will
always contain related files. A single MR may contain files
from multiple tasks that happened to be performed in
between commits. This condition will result in otherwise
unrelated files being logically coupled. The opposite may
also occur, where files with some logical connection are
committed separately, resulting in missed file relations. In
summary, the procedure employed by softChange may
make too large of an assumption about how developers use
CVS to manage open source projects.

ProjectWatcher [14] is another application that mines
information obtained from a CVS repository. However,

the approach taken by ProjectWatcher differs significantly
from the approach taken by softChange. ProjectWatcher
tracks local interaction history of developers to support
awareness in team-based software development. To do
this, a shadow CVS repository is used to track changes as
each developer makes them. A factbase of user edits is kept
up to date as auto-commits are performed on the shadow
repository. A TXL [16] program is used to uniquely
identify all entities in the software (such as modules,
methods, variables, etc.). Activity information can then
generated by cross-referencing the shadow repository with
the name factbase generated by the TXL program. This
approach has a significant advantage over the modification
request method used by softChange as it does not rely on
assumptions made about the relationships between entities.

2.2. Visualizing in 3D
Ware’s final two stages of visualization [17] involve using
graphics algorithms to produce an image on the screen that
affords better understanding of the underlying factual data.
There is evidence that using 3D graphics algorithms to
produce these images has certain benefits related to how the
human visual system perceives and processes information
[7].

Radfelder et al. [11] attempt to improve understanding of
UML diagrams by introducing a third dimension. They
claim that traditional 2D UML diagrams can be irritating to
the user if two related entities of interest are located on
opposing ends of the diagram. This problem occurs
especially in complex class diagrams with many relations
between entities. Their solution to this problem consists of
dynamically bringing the related entities to the foreground
of the visualization and moving the other entities to the
background. The authors claim that this form of
transformation – moving things of interest smoothly to the
front and moving things which have lost their particularity
to the background – is closer to the way human beings
interact with physical objects. That is, real-world objects
we are not interested in typically do not disappear, but are
moved aside to our peripheral vision.

Balzer et al. [2] use an interesting 3D representation of
software in their application, Software Landscapes (see
Figure 1). Balzer claims that information density in a
single view should be maximized under the constraint of
comprehensibility. That is, there should not be more visual
data in a single view than can be easily comprehended by
the human visual system. The method proposed by Balzer
realizes this rule by allowing the user to easily move
between levels of abstraction and to different parts of the
visualized system. The claim is that object-oriented
software can be naturally mapped to the landscape
metaphor due the hierarchical nature of software. Balzer
also argues that because human beings naturally know how
to navigate through a landscape (i.e. enter/exit structures,
move around obstacles) that this metaphor will allow users
to more easy familiarize themselves with the application,

3

which will in turn allow the user to understand the software
more effectively.

Figure 1 - Software Landscapes

2.3. Clustering and Visualization Layout
Spatial arrangement of visual entities is often used to
convey relationships between the correlating entities in the
software. This is because is it a natural human tendency to
group related objects, so it makes sense to group objects
visually in order to express their logical relationship.
Determining a layout for visual entities can be assisted by
using a clustering algorithm. Clustering in itself is a very
sophisticated reverse engineering technique [1] and a
complete summary of the field would be beyond the scope
of this paper. Discussed here is some of the literature
related to clustering and how it can be applied to software
visualization.

Anquetil et al. [1] performed a comparative study of
clustering algorithms and their application to software
remoduralisation. Their definition of clustering is an
activity in reverse engineering that consists of gathering
software entities (modules, routines, etc.) that compose the
system into meaningful (highly cohesive) and independent
(loosely coupled) groups. Anquetil states that is necessary
to define a description of each entity such that it can be
clustered according to some scheme, and to define a
coupling between entities. The coupling between entities
determines when two entities form a cohesive cluster.
Coupling may be defined as a dependency – i.e. a direct
link, or it may be defined by similar behaviour – i.e. a
sibling link. For example, in the case of Java classes, if
coupling was defined as external method calls, this would
be a direct link coupling. The more method calls between
two classes, the higher the coupling. If coupling surpasses
a certain threshold, these classes should be in the same
cluster. On the other hand, if coupling is defined as the
number of times classes call the same methods of another
class; this would be sibling link coupling.

Layout of visualizations for software often incorporate
clustering as described above to arrange entities visually.
GEVOL [4] visualizes software evolution using a series of
graphs representing the state of the software at various
points in lifetime of the software. Nodes represent entities
(classes, methods, etc.) in a Java program and edges
represent inheritance or calls. Coupling between the
entities is represented as weights assigned to each node.
The weight of each node is determined by the number of
times it appears over the total number of versions of the
software. The weighted nodes are fed into a force
algorithm, automatically determining the layout of the
graph.

Noack et al. [9] use a layout algorithm based on gravitation.
Nodes representing entities with high cohesion are
“attracted” to one another, while nodes that are more
loosely coupled are “repelled”. The result is a self-
organizing system of nodes that automatically arrange
themselves into clusters.

2.4. Visualization of Software Evolution
The changes software must undergo over its lifetime due to
changing requirements and routine maintenance cause
software systems to evolve over time [8]. Visualization
techniques can be useful for extracting useful evolution data
that is hidden among source releases, CVS repositiories,
and maintenance logs.

Wu et al. [18] have adapted spectrographs to create a
visualization application that conveys evolution
information. By mapping software versions against
software components and using colour to represent recent
change, a notion is gained of what versions involved major
changes to the system. This approach is useful for
identifying points in the lifetime of the software where new
functionality was added, or refactoring took place. Wu et
al. denote these points as software punctuations. Their
visualization is tested on a number of open source projects.
Most of these projects had at least one or two release
versions where the majority of the system had undergone
substantial change.

GEVOL [4] visualizes software evolution by showing a
series of snapshots in linear order. Each snapshot is
representative of a particular aspect of the system at that
time. Inheritance graphs, call-graphs, and control-flow
graphs were some of the properties of the software that
were visualized. Colour is used to represent recently added
entities or modification to existing entities.

Software evolution and other temporal qualities of software
present a special challenge to software visualization.
Careful thought needs to be given on how to effectively
visualize change.

3 PROBLEM
 Software development is often performed with large
development teams over a longer period of time. Even after

4

the software is deployed, maintenance must be performed
to ensure the continuing fulfillment of requirements. With
object-oriented software it is desirable to retain modularity.
That is, it is desirable to limit the dependencies between
components. The evolution process that all software
systems must undergo can often cause components to lose
their modularity and become logically linked to other
components. This has the unfortunate side-effect of making
changes to software more complicated than they need to be,
as changes in one component may cause unintended
changes in behaviour in a dependent component.

4 APPROACH
A visualization of the software that clearly represents
coupling and cohesion between software components may
aid software developers in determining what changes to the
system contributed to the coupling. Once the cause of the
increased cohesion is identified, corrective action could
then be taken to reduce the unwanted cohesion.

The approach taken by Wu et al. [18] with their evolution
spectrographs allowed developers to quickly identify what
versions of the system resulted in software punctuations. A
similar approach could be used to determine what versions
of the system resulted in increased coupling.

SoftSphere is an attempt at visualizing coupling between
software entities in a Java program. The evolution of the
system in terms of coupling is also visualized. While far
from a complete development application, SoftSphere
provides a framework to determine what visualization
techniques can be used to visualize aspects of software such
as coupling, cohesion, and software evolution.

5 IMPLEMENTATION
SoftSphere was designed to extract the syntactical structure
of Java programs and visually represent the various entities
and relationships composing the software. The goal is to
use data mining techniques similar to what was described in
Section 2 to generate a factbase. The resulting factbase is
structured such that it is a simple task to transform the facts
into visual primitives. A simple clustering algorithm is
used to arrange the visual primitives allowing the user to
quickly perceive what entities are more closely coupled.
That is, the spatial position of visual entities reflects the
strength of the relationship between their correlating
entities in the software. Finally, the evolution of the system
can be viewed by allowing the user to iterate through
subsequent versions of the system.

5.1. Generating the Factbase
A source transformation language, TXL [16], is used to
generate a factbase listing the various entities and
relationships that compose a piece of Java software. A
separate TXL program was used to derive each type of fact
from the source code. The type of entity facts that were
extracted from the source code include:

! Package entities

! Class entities

! Method entities

! Global Field entities

! Local Field entities

The types of relationship facts extracted from the source
code include:

! Import facts

! Local Method Call facts

! External Method Call facts

The facts are written in text format. A different text file is
used for each type of fact. The application parses the text
file and creates an internal hierarchical structure of the
software in memory. Each fact contains information
relating where in the hierarchy it should be placed.

Package coupling Imports

Class coupling
External Method Calls, Use
of Type

Method coupling Local Method Calls

Table 1- Definitions of coupling for various entities

The relationship facts are used to build a measure of
coupling between entities, similar to the description of
entity coupling given by Anquetil et al [1]. Coupling
between package entities is defined as the number of
imports between packages. That is, two packages are
defined to be highly coupled when one of the packages
imports many classes from the other package. The same
concept is used for coupling between classes. Coupling for
classes is determined by the number external method calls
between classes. Local method calls determine the
coupling between method entities. Table 1 summarizes the
different definitions of coupling used for each software
entity.

TXL provides an efficient means of gathering syntactical
data from the software. It is possible to generate a new
factbase each time the visualization is run, at the small
expense of a few seconds of overhead processing time.

5.2. Visual Representation
The mapping of software entities and relationships to visual
representation is performed in OpenGL. A number of
features offered by OpenGL are used to create an effective
3D representation of the software’s syntactical structure.

The scene is rendered using a perspective viewing
projection. This viewing projection is the closest
approximation to how the human vision system actually
perceives reality. The basic concept behind this view is that
distant objects appear smaller than objects that are closer.

5

This gives a more believable impression of a three
dimensional scene.

Standard OpenGL lighting was used to automatically shade
the objects, further enhancing the three-dimensional feel to
the scene. Figure 2 demonstrates how these two effects
used together create a three-dimensional representation of
software.

Figure 2 - 3D Effect achieved with lighting and perspective
viewing projection

As evident from the title of the prototype, the various
software entities are represented by spheres. In the current
implementation of SoftSphere software attributes were not
mapped to the shape of the entity. The sphere seemed to be
the most aesthetically pleasing choice for this type of
visualization. Relationships between the software entities
were represented by edges between their corresponding
spheres.

The user can navigate through several views of the
software. Each view pertains to a different syntactical level
of the software. The default level is the package-level
view. The user can view the packages and their
relationships to other packages (defined by Import facts).
By selecting a particular package, the user can switch to a
class-level view. Classes that are contained by the selected
package will be displayed along with their relations to other
classes in that package (defined by external method calls,
and field types). Selecting a particular class will switch to
the method-level view which display methods and global
fields present in the selected class.

5.3. Visualization Layout
Finding an effective method of arranging visual entities in
the viewing space can be difficult. The entities must be
arranged such that there is a limited amount of occlusion
and clutter. On top of this requirement is the desire to use
spatial position of entities such that it conveys the coupling
between entities in an intuitive manner.

A gravity-based clustering algorithm was devised in order
to meet the two above requirements. The algorithm is
based on the following two rules:

! Highly coupled nodes attract each other to a
minimum distance based upon the strength of the
coupling.

! Nodes with no or little coupling are repelled to a
pre-defined distance.

So in effect, there are two types of force determining the
locations of each node in the graph. Attraction is used to
move coupled nodes towards one another, and stop when
they have reached a suitable distance. Repulsion is used to
move unrelated nodes away from one another, reducing
clutter in the layout, and placing further emphasis on the
clusters generated by attracted nodes. Initially, the nodes
are place in a pseudo-random arrangement that ensures that
no two nodes will be placed in approximately the same
position. The clustering algorithm is then put into effect
until the arrangement stabilizes itself. Figure 3 shows an
example arrangement of a system generated by this
algorithm. In the lower right of the arrangement is a group
of highly coupled nodes.

Figure 3 - Gravity based clustering algorithm to visualize
coupling

5.4. Visualizing Software Evolution
To visualize the evolution of the software, each version of
the software is loaded into the visualization. The user can
iterate through the subsequent versions of the software.
The visualization will automatically rearrange itself to
reflect the changes made in each version. One of the
drawbacks of systems such as GEVOL or Wu’s
spectrographs was that it was difficult to track changes
from version to version of the software. The method of
visualizing evolution employed by SoftSphere allows the
user to dynamically view how the software changes over
time, instead of viewing individual snapshots or the entire

6

course of change all at once. A mental map of the software
is preserved through the use of animation.

5.5. Interactivity
A certain level of interactivity was necessary in order to
make full use of the three-dimensional rendering of the
visualization. While 3D rendering may promote cognitive
understanding, it also has the potential to increase the
effects of occlusion. Since a sense of depth has now been
introduced, background objects are more likely to be
occluded by objects in the foreground. This problem
presents the need for interactive techniques that allow the
user to manipulate the visualization or the viewpoint.

The ability to rotate, zoom, and pan the camera view
provide the user with a means to customize the viewpoint.
The level of abstraction with which the visualization is
viewed can also be changed. The software can be viewed at
the package, class, method, or field level by selecting an
entity and viewing the contents. For example, selecting a
package entity will show the inner classes of that package.
Figure 4 shows the expansion of a package node, allowing
the interior classes of the package to become visible.

6 OBSERVATIONS
The design and implementation of SoftSphere was
performed to see if it was viable to represent coupling and
software evolution in a three-dimension rendering using a
gravity-based clustering algorithm. The effectiveness of
each technique was informally evaluated.

To verify that coupling was being represented properly, an
open source project consisting of several packages and a
moderate amount of classes per package was visualized
using SoftSphere. Figure 4 shows a visualization of the

open source project Scarab [13]. Scarab is a issue-tracking
system implemented entirely in Java. Looking at the
visualization of package coupling on the left, it is apparent
that the screens package and the tools and tools.localization
packages are all highly coupled. This would indicate to a
developer that before making changes to any of these
packages it would be wise to carefully consider the effects
those changes would have on the other packages.

Expanding the screens shows approximately 20 classes
inside of that package. An obvious cluster has formed in
the lower right of the visualization. These classes all
pertain to the export of data. Therefore, it makes sense that
there is some degree of cohesion between these classes.

The use of node position to relate coupling works to give a
general idea of coupling. However, detailed information on
the nature of the coupling may be more useful. Integrating
a feature that allows the user to obtain specific details about
the code contributing to the coupling of the components
could be increase the usefulness of the visualization
significantly.

The use of three-dimensional rendering for SoftSphere
allowed experimentation with interactive techniques that
otherwise would not have been possible in a 2D rendering.
It also presented subtle annoyances and problems that
would not have been present otherwise. For example,
occlusion becomes more of a problem, especially when
using the perspective view. If viewed from an
inappropriate angle, a single graph may have most of its
entities occluded by a few entities at the forefront.

By introducing a three-dimensional perspective rendering,
the effectiveness of mapping software attributes to the size
of the visual entities is also reduced if not eliminated

Figure 4 – Visualization of coupling between packages and classes for the Scarab Issue Tracking Application [13]

7

entirely. As the visible size of entities is reduced the farther
back in the view they are placed, it is difficult to convey
any meaning by physically making objects larger or
smaller.

Determining if 3D rendering actually increases cognitive
understanding is not a straight-forward task. By having
people observe the visualizations and interact with the
application can give a rough idea of how effective the
visualization is at communicating software coupling, but
formal usability study would be necessary to validate any
positive or negative result.

Informal demonstrations of SoftSphere have produced
encouraging reactions. Observers have expressed their
desire to visualize their own programs with the application,
and found interacting with the visualization to be an
engaging experience. While far from solid evidence that
the techniques have merit, it does provide some
encouragement for continuing work on the prototype.

7 CONCLUSION
SoftSphere was presented as an application that
incorporated a series of techniques to aid in creating an
effective visualization of coupling between software entities
such as Java packages, classes, methods, and fields.
SoftSphere is not a full-fledged software development tool,
but a prototype that tests various visualization techniques
that could be incorporated into such a tool.

The four stages of information visualization suggested by
Ware et al. were kept in mind throughout the creation of the
application. TXL programs were used to gather software
facts directly from the code and store them in a format
suitable as a basis for a hierarchical representation of the
software. A three-dimensional rendering of the scene was
constructed using a perspective viewing projection and
lighting. Interaction techniques supported the ability to
interact with the software similar to how a person would
interact with a physical object in the real world. A notion
of the coupling between the various software entities was
obtained through the use of a gravity-based clustering
algorithm. A limited sense of how the software evolved in
terms of coupling was gained by iterating through
subsequent versions of the software and dynamically
updating the visualization to reflect any changes made.

Possible avenues for future work include expanding the
feature set of SoftSphere to include transition effects so that
when changing the level-of-abstraction (e.g. switching from
package level to class level) the selected entity can be
shown in context to the level above it. The would further
preserve the mental map the user has of the software and
provide a more aesthetic experience when using the
software.

Other definitions of coupling should also be considered.
Instead of visualizing syntactical coupling, logical coupling
(as done in softChange [5]) could be calculated using a
variety of methods and visualized in a similar fashion.

8 REFERENCES
[1] N. Anquetil and T.C. Lethbridge. Comparitive Study

of Clustering Algorithms and Abstract Representations
for Software Remodularisation. IEE Proceedings –
Software, 2003.

[2] M. Balzer, A. Noack, O. Deussen, C. Lewerentz.
Software Landscapes: Visualizing the Structure of Large
Software Systems. Joint EUROGRAPHICS – IEEE
TCVG Symposium on Visualization, Konstanz,
Germany, 2004.

[3] M. Burch, S. Diehl, and P. Weißgerber. Visual Data
Mining in Software Archives. SoftVis '05: Proceedings
of the 2005 ACM symposium on Software visualization,
New York, 2005.

[4] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K.
Wampler. A System for Graph-Based Visualization of
the Evolution of Software. SoftVis '03: Proceedings of
the 2003 ACM symposium on Software visualization,
San Diego, California, 2003.

[5] D.M. German. Mining CVS Repositories, the
softChange Experience. Proceedings SEKE 2004 The
16th Internation Conference on Software, Banff, 2004.

[6] D.M. German, A. Hindle, and N. Jordan. Visualizing
the evolution of software using softChange. Journal of
Software Engineering Knowledge Engineering,
Edinburgh, 2004.

[7] P. Irani, M. Tingley and C. Ware. Using Perceptual
Syntax to Enhance Semantic Content in Diagrams.
IEEE Comput. Graph. Appl., 2001.

[8] M.M. Lehman and L.A.Belady. Program Evolution –
Process of Software Change. Academic Press, London
UK, 1985.

[9] A. Noack and C. Lewerentz. A Space of Layout Styles
for Hierarchical Graph Models of Software Systems.
SoftVis '05: Proceedings of the 2005 ACM symposium
on Software visualization, New York, 2005.

[10] A. Orso, J.A. Jones, M.J. Harrold, and J. Stasko.
Gammatella: Visualization of Program-Execution Data
for Deployed Software. ICSE '04: Proceedings of the
26th International Conference on Software Engineering,
2004.

[11] O. Radfelder and M. Gogolla. On better understanding
UML diagrams through interactive three-dimensional
visualization and animation. AVI '00: Proceedings of
the working conference on Advanced visual interfaces,
Palmero, Italy, 2000.

[12] G. Robles, J.M. Gonzalez-Barahona, and R.A. Ghosh.
GlueTheos: Automating the Retrieval and Analaysis of
Data from Publicly Available Software Repositories.
MSR 2004, Edinburgh, 2004.

[13] Tigris.org: Open Source Software Engineering Tools.
April 28th. <http://scarab.tigris.org/>.

8

[14] K.A. Schneider, C. Gutwin, R. Penner, and D.
Paquette. Mining a Software Developer's Local
Interaction History. MSR 2004, Edinburgh, 2004.

[15] M. Tavanti and M. Lind. 2D vs. 3D, Implications on
Spatial Memory. INFOVIS '01: Proceedings of the IEEE
Symposium on Information Visualization, 2001.

[16] TXL Home Page. April 1st, 2005 <http://www.txl.ca/>.

[17] C. Ware. Information Visualization: Perception for
Design. San Francisco, CA. Morgan Kauffman, 2000.

[18] J. Wu and R.C. Holt and A.E. Hassan. Exploring
Software Evolution Using Spectrographs, WCRE '04:
Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE'04), 2004.

