
The University of Saskatchewan
Department of Computer Science

Technical Report #2005-02

A study of the numerical schemes in Zephyr

Rong Wang∗, Raymond J. Spiteri†, and Rosette Tuy‡

June 28, 2005

Abstract

Zephyr is a software package designed by Martec, Ltd. that is designed
to solve the Euler equations for the ideal (or perfect) gas. It is a deriva-
tive of Martec’s proprietary flow solver, Chinook. Zephyr was created as
a research tool to examine the key numerical features of Chinook. Zephyr
employs a Godunov-type scheme, where the Godunov flux is computed
by solving the corresponding Riemann problem with the approximate Rie-
mann solver known as HLLC. Instead of applying the traditional Godunov
scheme for the time integration, Zephyr uses explicit Runge-Kutta (ERK)
schemes. In this report we describe the schemes in Zephyr for the spatial
and time discretizations. Numerical results are presented for the classical
shocktube problem using the ERK methods originally in Zephyr as well
as other ERK methods that we have added. Computational results show
that the stability restriction is the major barrier in terms of the allow-
able time step. That is, the stability requirement forces the software to
use tiny time steps, consequently leading to exceedingly small temporal
errors. Thus, there is no reason to employ anything beyond the forward
Euler method for the time integration. Indeed we see that it is the most
efficient in terms of both computer time and memory. Better efficiencies
will only be possible using an implicit time integrator such as the implicit
HLLC or a high-order spatial scheme.

Keywords: Euler equations, HLLC, explicit Runge–Kutta methods

1 Properties of the 1-D Euler equations

The one-dimensional Euler equations for an incompressible gas take the form

Ut + fx(U) = 0, (1)

∗Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan,

S7N 5A9, Canada. The work of this author was partially supported by MITACS and Martec,

Ltd. rong@cs.usask.ca.
†Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan,

S7N 5A9, Canada. The work of this author was partially supported by MITACS and Martec,

Ltd. spiteri@cs.usask.ca.
‡Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan,

S7N 5A9, Canada. The work of this author was partially supported by MITACS and Martec,

Ltd.. tuy@cs.usask.ca.

1

where

U :=

u(1)

u(2)

u(3)

 =

ρ
ρu
ρE

 , f(U) =

ρu
ρu2 + p
ρuH

 ,

where ρ is the density, u is the velocity, p is the pressure, E = e +
1

2
u2, and

H = E + p/ρ. These equations respectively represent the conservation of mass,
momentum, and energy. We assume the gas is ideal; the equation of state is
then given by

p = (γ − 1)ρe,

where γ is a constant, which represents the ratio of specific heats.
If Ux exists, equation (1) can be rewritten as

Ut + f ′(U)Ux = 0. (2)

In numerical computations, the characteristic speeds of the gas are needed to
calculate the time-step stability restriction. These speeds are given by the eigen-
values of f ′(U). It is not easy to obtain to obtain these eigenvalues directly from
f ′(U). However, we can more easily compute the eigenvalues by using the fol-
lowing transformation of variables. We generate new dependent variables by
the transformation

w(1) = u(1),

w(2) =
u(2)

u(1)
,

w(3) = (γ − 1)

(

u(3) − (u(2))2

u(1)

)

.

That is,

W :=

w(1)

w(2)

w(3)

 =

ρ
u
p

 .

Now Ut = (∂U/∂W)Wt := QWt, and Ux = (∂U/∂W)Wx := QWx,
equation (2) can be rewritten as

QWt + f ′(U(W))QWx = 0.

The Jacobian Q = ∂U/∂W and its inverse are found to be

Q =

1 0 0
u ρ 0

1
2u2 ρu 1

γ−1

 , Q−1 =

1 0 0
−u/p 1/ρ 0
γ−1

2 u2 (1 − γ)u γ − 1

 .

Left multiplication by Q−1 gives the Euler equations in nonconservative form,

Wt + f̃ ′(W)Wx = 0,

2

where

f̃ ′(W) = Q−1f ′(U(W))Q =

u ρ 0
0 u 1/ρ
0 ρc2 u

 .

Here c =
√

γp/ρ is the speed of sound. The eigenvalues of f̃ ′(W) (and hence of
f ′(U)) are easily found to be

λ1 = u − c, λ2 = u, λ3 = u + c. (3)

The corresponding eigenvectors of f̃ ′(W) are

R̃1 =
1

2

−ρ/c
1

−ρc

 , R̃2 =

1
0
0

 , R̃3 =
1

2

ρ/c
1
ρc

 .

We note that the wave speed is the maximum of the absolute value of the
eigenvalues in equation (3). That is

Sw =

{

u + c, if u ≥ 0;
−u + c, if u < 0;

(4)

2 Conservative Spatial Discretization Scheme

We assume the spatial domain is [0, 1] and that a uniform mesh with J subin-
tervals is used; i.e., the mesh has grid points

xj = j/J, i = 0, 1, . . . , J.

A conservative scheme is of the following form:

U̇j = − 1

∆x

(

f̂j+ 1
2
− f̂j− 1

2

)

,

where ∆x = xj+1 − xj , and f̂j+1/2 is the solution of the following Riemann
problem in the cell [xj , xj+1]; i.e., equation (1) with the initial condition

U(x, tn) = UL = U(xi, tn), if xi ≤ x ≤ xi+ 1
2
;

U(x, tn) = UR = U(xi+1, tn), if xi+ 1
2
≤ x ≤ xi+1.

We now describe the HLLC Riemann solver [1, 7] implemented in Zephyr.
Let the local left and the right wave speeds be

sL
i = min (ū − c̄, ui − ci) ,

sR
i = max (ū + c̄, ui+1 + ci+1) ,

3

where ui is the velocity, ci is the speed of sound at xi, ū and c̄ are given as
follows

ū =

√
ρiui +

√
ρi+1ui+1√

ρi +
√

ρi+1
,

c̄ =

√√
ρic2

i +
√

ρi+1c2
i+1√

ρi +
√

ρi+1
.

Another parameter uHLL
i is then computed according to

uHLL
i =

sR
i ρi+1ui+1 − sL

i ρiui + (f2)i − (f2)i+1

ρHLL
i (sR

i − sL
i)

,

where (f2)i is the second component of f(U), i.e., ρu2 + p, evaluated at xi. The
parameter ρHLL

i is obtained from

ρHLL
i =

sR
i ρi+1 − sL

i ρi + (f1)i − (f1)i+1

sR
i − sL

i

,

where (f1)i is the first component of f(U), i.e., ρu, evaluated at xi.
The HLLC flux is now written as

f̂j+ 1
2

=

fi, if 0 ≤ sL
i ,

fi + sL
i (UL

⋆ − Ui) if sL
i ≤ 0 ≤ uHLL

i ,
fi+1 + sR

i (UR
⋆ − Ui+1) if uHLL

i ≤ 0 ≤ sR
i

fi, if 0 ≤ sL
i ,

where

UL
⋆ = ρi

(

sL
i − ui

sL
i − uHLL

i

)

1
uHLL

i
Ei

ρi

+ (uHLL
i − ui)

(

uHLL
i + pi

ρi(sL

i
−ui)

)

,

and

UR
⋆ = ρi+1

(

sR
i − ui+1

sR
i − uHLL

i

)

1
uHLL

i
Ei+1

ρi+1
+ (uHLL

i − ui+1)
(

uHLL
i + pi+1

ρi+1(sR

i
−ui+1)

)

.

3 Low-storage ERK methods in Zephyr

Let us consider the following ordinary differential equation:

Yt = f(t,Y). (5)

4

An m-stage low-storage ERK method has the form

Y(0) = Yn

Y(1) = Yn + α1∆t f(tn,Y(0))

Y(2) = Yn + α2∆t f(tn + α1∆t,Y(1))

...

Y(k+1) = Yn + αk+1∆t f(tn + αk∆t,Y(k))

...

Yn+1 = Y(m) = Yn + αm∆t f(tn + αm−1∆t,Y(m−1)).

In order to be consistent, it is easy to see that we must have αm = 1. Unlike
usual ERK schemes, only the approximate solution Yn at tn and the current
stage Y(k) are stored in order to reduce the memory requirement. It is easy
to show that these low-storage ERK schemes are at most first-order (though
other low-storage schemes of higher order are possible; see e.g., [2]). The stage
coefficients can be tuned to increase the maximum step size and to improve the
stability for the upwind spatial discretization [8]. In Zephyr, the coefficients
are chosen from [8] even though the spatial discretization scheme is based on
HLLC. Table 3 gives the CFL number and the stage coefficients for the first-
and second-order upwind spatial scheme.

first-order HLLC scheme second-order HLLC scheme
stages 2 4 6 2 4 6

σ 1 2 3 0.4693 0.9214 3
α1 0.3333 0.0833 0.0370 0.4242 0.1084 0.0370
α2 1 0.2069 0.0851 1 0.2602 0.0851
α3 0.4265 0.1521 0.5052 0.1521
α4 1 0.2562 1 0.2562
α5 0.4512 0.4512
α6 1 1

Table 1: Stage coefficients (α) and CFL number (σ).

Besides the above ERK methods, the forward Euler method is also imple-
mented in Zephyr with σ = 1.

4 Algorithm for the time integration

The time integration in Zephyr is implemented as follows:
dt ramp= 10−12

t = t0
while (t < tout)

5

{
Calculate the wave speed in the i-th cell, (Sw)i, using (4).
Calculate dt global, the largest step size based on the CFL condition.
(See below for details.)
Set dt global= min(dt global, dt ramp).
Set dt ramp= 2 * dt ramp.
Set dt employ= σ * dt global, where σ is the CFL number from Table 1.
(σ depends on the choice of spatial and ERK schemes.)
Take one step using ERK methods with the step size dt employ.
Set t = t + dt employ.

}
We note that the initial step size is at most 10−12 even though the largest

step size based on CFL condition may be much larger in practice than 10−12. At
each time step, the largest time stable step size is calculated using C ∆x

(Sw)i

, where

(Sw)i is the wave speed in the i-th cell, and C is the Courant coefficient supplied
by the user. The recommended value of C is 0.5. The step size dt global is
then chosen as the minimum value over all the cells; i.e.,

dt global = min
i

C
∆x

(Sw)i
. (6)

¿From (6) we note that dt global does not depend on which ERK method
is used. Because dt employ= σ * dt global, we see from Table 3 that if the
first-order HLLC method is employed for the spatial discretization,

• dt employ= dt global when the forward Euler method is used for the
time integration;

• dt employ= dt global when the 2-stage ERK scheme is used for time
integration;

• dt employ= 2 · dt global when the 4-stage ERK scheme is used for time
integration;

• dt employ= 3 · dt global when the 6-stage ERK scheme is used for time
integration.

In each time step, the m-stage ERK method takes essentially m times as ex-
pensive as the forward Euler method. Therefore, we expect that the forward
Euler method will be the least expensive method in terms of cost per step. The
other three methods have similar costs per step. Specifically, the forward Euler
method costs essentially half as much per step as the other methods. This be-
comes particularly relevant in situations where the spatial error is the dominant
source of error in a given problem. In such cases, the forward Euler method will
be the most computationally efficient.

Similarly, if the second-order HLLC method is employed for the spatial dis-
cretization,

6

• dt employ= dt global when the forward Euler method is used for the
time integration;

• dt employ= 0.4693 · dt global when the 2-stage ERK scheme is used for
time integration;

• dt employ= 0.9214 · dt global when the 4-stage ERK scheme is used for
time integration;

• dt employ= 3 · dt global when the 6-stage ERK scheme is used for time
integration.

As before, the forward Euler method is the most computationally efficient. How-
ever, now the 6-stage ERK method is the second most efficient. The performance
of 2-stage and 4-stage are still similar; they are the least efficient in this case.

5 Numerical experiments

The notation used and the statistics collected in this section include:

p: the pressure;
ρ: the density;
u: the velocity;
CPU : the CPU time in seconds;
r: the order of the spatial schemes;
m: the number of stages for the ERK methods.

Here m = 1 is the forward Euler method, m = 2, 4, 6, are the ERK methods
in Table 3.

5.1 Problem 1

The first problem is the 1-D Euler equations with the following initial conditions.

p =

{

105, if 0 ≤ x ≤ 0.5;
103, if 0.5 ≤ x ≤ 1;

ρ =

{

1, if 0 ≤ x ≤ 0.5;
0.01, if 0.5 ≤ x ≤ 1;

u = 0, 0 ≤ x ≤ 1.

γ is chosen to be 1.4.
A reference solution, Uref is obtained by applying Zephyr with J = 50000,

r = 1 and m = 1. We compute the solution at the output time t = 4 × 10−4

and plot p, ρ, and u.

7

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: p for Problem 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: ρ for Problem 1.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: u for Problem 1.

8

The error of a given numerical solution is computed from

√

∫ 1

0
(U − Uref)2 dx

√

∫ 1

0
U2

ref dx

We applied Zephyr with different time step sizes for testing. The default step
size is given by dt employ= σ * dt global. We further modified the formula
to dt employ= θ * σ * dt globalin order to examine the effect of the Courant
coefficient. Therefore, θ = 1 means the default step size is used, while θ = 2
means twice the default step size is used. Similarly, θ = 0.5 means that only
half the default step size is used. The following tables report the errors and the
CPU time when we apply Zephyr with J = 400 and r = 1.

θ p ρ u CPU
0.5 1.88 · 10−2 1.82 · 10−2 1.16 · 10−1 10.67
1 1.81 · 10−2 1.76 · 10−2 1.14 · 10−1 5.35
2 1.65 · 10−2 1.58 · 10−2 1.01 · 10−1 2.91

4 or 8 unstable

Table 2: The error with J = 400, r = 1, and m = 1 for Problem 1.

θ p ρ u CPU
0.5 1.90 · 10−2 1.85 · 10−2 1.16 · 10−1 20.41
1 1.84 · 10−2 1.82 · 10−2 1.13 · 10−1 10.68
2 1.76 · 10−2 1.75 · 10−2 1.17 · 10−1 5.59
4 1.56 · 10−2 1.60 · 10−2 1.02 · 10−1 3.11
8 unstable

Table 3: The error with J = 400, r = 1, and m = 2 for Problem 1.

θ p ρ u CPU
0.5 1.86 · 10−2 1.84 · 10−2 1.15 · 10−1 19.61
1 1.78 · 10−2 1.78 · 10−2 1.19 · 10−1 10.50
2 1.67 · 10−2 1.69 · 10−2 1.28 · 10−1 5.54
4 1.59 · 10−2 1.60 · 10−2 1.42 · 10−1 3.73
8 unstable

Table 4: The error with J = 400, r = 1, and m = 4 for Problem 1.

9

θ p ρ u CPU
0.5 1.83 · 10−2 1.82 · 10−2 1.16 · 10−1 19.51
1 1.68 · 10−2 1.73 · 10−2 1.10 · 10−1 10.46
2 1.46 · 10−2 1.61 · 10−2 8.57 · 10−2 6.27
4 1.98 · 10−2 1.66 · 10−2 2.16 · 10−1 4.24
8 unstable

Table 5: The error with J = 400, r = 1, and m = 6 for Problem 1.

We make the following observations.

• As discussed in Section 4, the forward Euler method is the most efficient
among all the methods when the default setting is used in Zephyr; i.e.,
when θ = 1. The other schemes have similar performance, as expected.

• The forward Euler method is unstable when θ = 4 or 8, whereas the other
ERK methods are unstable only when θ = 8. It seems that the Courant
coefficient, C, can be set to 1.

• It is possible to improve efficiency without loss of accuracy by using values
of θ that are greater than 1.

• The error does not increase when the time step size is increased provided
that a stable solution is obtained. This means that the spatial error dom-
inates the temporal error no matter which ERK scheme is used. In other
words, the CFL restriction forces Zephyr to use tiny time steps that lead
to unnecessarily small temporal errors. Because the CFL condition forces
all the methods to take small time steps, they produce solutions with
small temporal errors. Thus the total errors are dominated by the spatial
component, and hence there is no advantage to using higher-order ERK
schemes.

We now present the results for J = 400 and r = 2. As shown in the following
tables, better errors are obtained because the second-order spatial scheme is
employed.

θ p ρ u CPU
0.5 6.08 · 10−3 6.63 · 10−3 9.40 · 10−2 19.54
1 5.16 · 10−3 5.08 · 10−3 9.25 · 10−2 9.96
2 6.33 · 10−3 4.82 · 10−3 1.13 · 10−1 5.32

4 or 8 unstable

Table 6: The error with J = 400, r = 2, and m = 1 for Problem 1.

10

θ p ρ u CPU
0.5 6.74 · 10−3 8.01 · 10−3 9.25 · 10−2 71.81
1 6.46 · 10−3 7.78 · 10−3 9.28 · 10−2 36.67
2 5.93 · 10−3 7.37 · 10−3 9.28 · 10−2 18.66
4 4.95 · 10−3 6.66 · 10−3 8.95 · 10−2 9.80
8 unstable

Table 7: The error with J = 400, r = 2, and m = 2 for Problem 1.

θ p ρ u CPU
0.5 6.62 · 10−3 7.99 · 10−3 9.45 · 10−2 64.81
1 6.30 · 10−3 7.81 · 10−3 9.78 · 10−2 33.05
2 6.37 · 10−3 7.64 · 10−3 1.11 · 10−1 17.28
4 6.37 · 10−3 7.78 · 10−3 1.04 · 10−1 10.04
8 1.08 · 10−2 1.18 · 10−2 1.35 · 10−1 5.80

Table 8: The error with J = 400, r = 2, and m = 4 for Problem 1.

θ p ρ u CPU
0.5 6.22 · 10−3 7.26 · 10−3 1.07 · 10−1 29.57
1 4.95 · 10−3 6.76 · 10−3 8.33 · 10−2 16.88
2 9.31 · 10−3 9.26 · 10−3 1.13 · 10−1 9.71
4 2.85 · 10−2 1.95 · 10−2 2.24 · 10−1 6.44
8 unstable

Table 9: The error with J = 400, r = 2, and m = 6 for Problem 1.

We have the same results as before regarding performance. There are, how-
ever, two notable differences.

• We are able to obtain a solution with m = 4 and θ = 8 even though the
error is larger than others. As we know, at each time step dt employ=
0.9214 · dt global for the 4-stage ERK scheme. In other words, it takes a
smaller step than even the forward Euler method. Recall that the value of
σ and the coefficients of the ERK schemes employed in Zephyr are chosen
from [8], where a different spatial discretization is employed. As for the
HLLC scheme, a larger step size could be allowed, especially when the
spatial scheme is second order.

• For the 6-stage ERK scheme, when we choose θ = 2 and θ = 4, the error
is doubled; i.e., the temporal error now dominates the spatial error. This
implies that it is not as accurate as the other methods with the same θ;
i.e., it has a larger error constant for this problem.

11

¿From the above experiments, we conclude that when the same mesh and
order of spatial discretization r are used, the forward Euler method is the most
efficient choice in default mode (θ = 1). We now present results using J = 2000.

θ p ρ u CPU
0.5 6.97 · 10−3 8.27 · 10−3 6.47 · 10−2 274.51
1 6.65 · 10−3 7.81 · 10−3 6.56 · 10−2 157.55
2 6.04 · 10−3 6.72 · 10−3 5.94 · 10−2 73.38

4 or 8 unstable

Table 10: The error with J = 2000, r = 1, and m = 1 for Problem 1.

θ p ρ u CPU
0.5 7.05 · 10−3 8.51 · 10−3 6.44 · 10−2 539.12
1 6.90 · 10−3 8.33 · 10−3 6.62 · 10−2 306.95
2 6.51 · 10−3 7.93 · 10−3 6.53 · 10−2 140.47
4 5.54 · 10−3 7.14 · 10−3 5.41 · 10−2 74.05
8 unstable

Table 11: The error with J = 2000, r = 1, and m = 2 for Problem 1.

θ p ρ u CPU
0.5 6.96 · 10−3 8.45 · 10−3 6.65 · 10−2 492.79
1 6.60 · 10−3 8.21 · 10−3 6.59 · 10−2 282.55
2 5.98 · 10−3 7.72 · 10−3 6.50 · 10−2 130.88
4 5.98 · 10−3 7.20 · 10−3 7.21 · 10−2 80.18
8 unstable

Table 12: The error with J = 2000, r = 1, and m = 4 for Problem 1.

θ p ρ u CPU
0.5 6.66 · 10−3 8.37 · 10−3 6.15 · 10−2 480.56
1 6.40 · 10−3 8.09 · 10−3 6.85 · 10−2 276.66
2 5.57 · 10−3 7.55 · 10−3 6.32 · 10−2 140.17
4 4.51 · 10−2 3.25 · 10−2 2.17 · 10−1 88.63
8 unstable

Table 13: The error with J = 2000, r = 1, and m = 6 for Problem 1.

12

θ p ρ u CPU
0.5 1.53 · 10−3 9.07 · 10−4 3.81 · 10−2 466.70
1 1.67 · 10−3 1.66 · 10−3 3.63 · 10−2 234.76
2 3.18 · 10−3 2.78 · 10−3 4.14 · 10−2 121.85

4 or 8 unstable

Table 14: The error with J = 2000, r = 2, and m = 1 for Problem 1.

θ p ρ u CPU
0.5 1.78 · 10−3 1.99 · 10−3 4.11 · 10−2 1795.01
1 1.65 · 10−3 1.85 · 10−3 3.96 · 10−2 868.92
2 1.62 · 10−3 1.61 · 10−3 3.96 · 10−2 433.24
4 1.90 · 10−3 1.40 · 10−3 3.93 · 10−2 220.16
8 unstable

Table 15: The error with J = 2000, r = 2, and m = 2 for Problem 1.

θ p ρ u CPU
0.5 1.75 · 10−3 2.08 · 10−3 4.08 · 10−2 1775.02
1 1.81 · 10−3 2.07 · 10−3 4.31 · 10−2 861.99
2 2.09 · 10−3 2.16 · 10−3 4.52 · 10−2 397.83
4 3.06 · 10−3 2.86 · 10−3 3.60 · 10−2 209.32
8 9.95 · 10−3 7.84 · 10−3 5.94 · 10−2 112.69

Table 16: The error with J = 2000, r = 2, and m = 4 for Problem 1.

θ p ρ u CPU
0.5 1.95 · 10−3 1.67 · 10−3 4.40 · 10−2 685.98
1 2.23 · 10−3 1.99 · 10−3 2.58 · 10−2 410.00
2 2.06 · 10−2 8.88 · 10−3 3.34 · 10−1 249.68

4 or 8 unstable

Table 17: The error with J = 2000, r = 2, and m = 6 for Problem 1.

Comparing the tests between J = 400 and 2000, we see that in order to
obtain the same accuracy with m = 1, using r = 2 is more efficient. For
example, if we set θ = 1, similar errors are obtained by using either J = 400,
r = 2, and m = 1, or J = 2000, r = 1, and m = 1. However, the former
combination of settings leads to much more efficient program than the latter.

In addition to the ERK schemes originally coded in Zephyr, we tested two
classical second-order ERK methods. We refer to the first one as m = 2M . It

13

is based on the well known mid-point rule and has the form

Y(1) = Yn + 0.5 ∆t f(tn,Yn),

Yn+1 = Yn + ∆t f(tn + 0.5 ∆t,Y(1)).

We refer the second one as m = 2T . It is based on the well known trapezoidal
rule and has the form

Y(1) = Yn + ∆t f(tn,Yn),

Yn+1 = Yn + 0.5 ∆t f(tn,Yn) + 0.5 ∆t f(tn + ∆t,Y(1)).

We now present the results by using the two ERK schemes with σ = 1.

θ p ρ u CPU
0.5 7.08 · 10−3 8.62 · 10−3 6.44 · 10−2 537.62
1 6.97 · 10−3 8.56 · 10−3 6.59 · 10−2 270.58
2 6.65 · 10−3 8.40 · 10−3 6.50 · 10−2 135.68

4 or 8 unstable

Table 18: The error with J = 2000, r = 1, and m = 2M for Problem 1.

θ p ρ u CPU
0.5 6.97 · 10−3 8.27 · 10−3 6.47 · 10−2 489.13
1 6.65 · 10−3 7.81 · 10−3 6.56 · 10−2 246.31
2 6.04 · 10−3 6.72 · 10−3 5.94 · 10−2 124.77

4 or 8 unstable

Table 19: The error with J = 2000, r = 1, and m = 2T for Problem 1.

θ p ρ u CPU
0.5 1.79 · 10−3 2.07 · 10−3 4.20 · 10−2 819.13
1 1.54 · 10−3 2.07 · 10−3 3.78 · 10−2 408.77
2 2.07 · 10−3 2.11 · 10−3 4.37 · 10−2 209.06

4 or 8 unstable

Table 20: The error with J = 2000, r = 2, and m = 2M for Problem 1.

14

θ p ρ u CPU
0.5 1.53 · 10−3 9.07 · 10−4 3.81 · 10−2 737.96
1 1.67 · 10−3 1.66 · 10−3 3.63 · 10−2 371.49
2 3.14 · 10−3 2.75 · 10−3 4.17 · 10−2 191.53
4 unstable

Table 21: The error with J = 2000, r = 2, and m = 2T for Problem 1.

As expected, these added methods offer no computational advantage com-
pared to the forward Euler method.

5.2 Problem 2

The second problem we consider is the 1-D Euler equations with the following
initial conditions:

p =

{

104, if 0 ≤ x ≤ 0.5;
105, if 0.5 ≤ x ≤ 1;

ρ =

{

0.125, if 0 ≤ x ≤ 0.5;
1, if 0.5 ≤ x ≤ 1;

u = 0, 0 ≤ x ≤ 1.

γ is chosen to be 1.4.
The reference solution Uref is obtained by applying Zephyr with J = 50000,

r = 2, and m = 1. We compute the solution at the output time t = 6 × 10−4.

θ p ρ u CPU
0.5 2.25 · 10−2 2.37 · 10−2 7.23 · 10−2 8.26
1 2.08 · 10−2 2.25 · 10−2 6.62 · 10−2 4.24
2 1.58 · 10−2 1.94 · 10−2 3.88 · 10−2 2.28

4 or 8 unstable

Table 22: The error with J = 400, r = 1, and m = 1 for Problem 2.

θ p ρ u CPU
0.5 2.30 · 10−2 2.41 · 10−2 7.46 · 10−2 16.09
1 2.19 · 10−2 2.35 · 10−2 7.07 · 10−2 8.32
2 2.11 · 10−2 2.27 · 10−2 7.30 · 10−2 4.48
4 2.48 · 10−2 2.36 · 10−2 8.65 · 10−2 2.56
8 unstable

Table 23: The error with J = 400, r = 1, and m = 2 for Problem 2.

15

θ p ρ u CPU
0.5 2.24 · 10−2 2.38 · 10−2 7.39 · 10−2 15.46
1 2.23 · 10−2 2.35 · 10−2 7.96 · 10−2 8.09
2 1.67 · 10−2 2.08 · 10−2 4.65 · 10−2 4.56
4 2.41 · 10−2 2.30 · 10−2 7.76 · 10−2 3.19
8 unstable

Table 24: The error with J = 400, r = 1, and m = 4 for Problem 2.

θ p ρ u CPU
0.5 2.14 · 10−2 2.33 · 10−2 6.95 · 10−2 15.36
1 2.21 · 10−2 2.33 · 10−2 8.05 · 10−2 8.43
2 1.58 · 10−2 2.04 · 10−2 4.09 · 10−2 5.23

4 or 8 unstable

Table 25: The error with J = 400, r = 1, and m = 6 for Problem 2.

θ p ρ u CPU
0.5 8.29 · 10−3 1.15 · 10−2 4.19 · 10−2 14.86
1 7.49 · 10−3 1.01 · 10−2 4.20 · 10−2 7.61
2 1.56 · 10−2 1.28 · 10−2 5.77 · 10−2 4.25

4 or 8 unstable

Table 26: The error with J = 400, r = 2, and m = 1 for Problem 2.

θ p ρ u CPU
0.5 1.01 · 10−2 1.31 · 10−2 4.74 · 10−2 54.63
1 9.59 · 10−3 1.28 · 10−2 4.63 · 10−2 27.67
2 8.78 · 10−3 1.24 · 10−2 4.47 · 10−2 14.38
4 1.14 · 10−2 1.31 · 10−2 5.66 · 10−2 7.65
8 7.41 · 10−2 5.85 · 10−2 1.66 · 10−1 4.45

Table 27: The error with J = 400, r = 2, and m = 2 for Problem 2.

16

θ p ρ u CPU
0.5 9.75 · 10−3 1.30 · 10−2 4.65 · 10−2 49.49
1 1.02 · 10−2 1.32 · 10−2 5.17 · 10−2 25.54
2 1.00 · 10−2 1.31 · 10−2 4.99 · 10−2 13.32
4 1.38 · 10−2 1.50 · 10−3 5.11 · 10−2 7.72
8 3.16 · 10−2 2.65 · 10−2 6.36 · 10−2 4.79

Table 28: The error with J = 400, r = 2, and m = 4 for Problem 2.

θ p ρ u CPU
0.5 8.74 · 10−3 1.23 · 10−2 4.52 · 10−2 22.82
1 9.58 · 10−3 1.25 · 10−2 3.72 · 10−2 13.2
2 7.14 · 10−2 4.67 · 10−2 2.76 · 10−1 8.32
4 1.22 · 10−1 8.38 · 10−2 3.28 · 10−1 6.41
8 unstable

Table 29: The error with J = 400, r = 2, and m = 6 for Problem 2.

Once again we see that in the default mode (θ = 1) and for a given level
of accuracy, the most efficient combination of settings for Zephyr is the second-
order spatial discretization combined with the forward Euler method in time.

6 Conclusions and future directions

We have performed several experiments using Zephyr for the 1-D Euler equa-
tions. The main conclusion is that, based on the current spatial discretization
schemes, the stability requirement forces the software to use extremely small
time steps, and hence the temporal errors are exceedingly small. High-order
ERK methods are not able to take large enough step sizes to overcome the in-
creased cost per step. The most efficient combination of settings is to use the
second-order scheme in space and the forward Euler method in time. In order
to improve the efficiency for 1-D problems, we could use high-order spatial dis-
cretization schemes, such as ENO [3, 4] or WENO [5] schemes. This can increase
the numerical domain of integration and hence ameliorate the CFL restriction.
At the same time, a given accuracy can be achieved by smaller number of mesh
points in space, also leading to the possibility of employing larger time steps.
Another approach to improve the efficiency of Zephyr is to switch to the use of
an implicit solver.

References

[1] P. Batten, N. Clarke, C. Lambert, and D.M. Causon, On the choice of
wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18

17

(1997), 1553–1570.

[2] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-
order time discretization methods, SIAM Review, 43 (2001), 89–112.

[3] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high
order Essentially Non-Oscillatory schemes I, SIAM J. Numer. Anal., 24
(1987), 270–309.

[4] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high
order Essentially Non-Oscillatory schemes III, J. Comput. Phys., 71
(1987), 231–303.

[5] G.-S. Jiang and C.-W. Shu, Efficient implementation of Weighted ENO
schemes, J. Comput. Phys., 126 (1996), 202–228.

[6] B. Van Leer, C.H. Tai, and K.G. Powell, Design of optimally smoothing
multi-stage schemes for the Euler equations, AIAA Paper 89–1933, 1989.

[7] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, a
practical introduction, Springer-Verlag, New York, second edition, 1999.

[8] C.H. Tai, J.H. Sheu, and B. Van Leer, Optimal multistage schemes
for Euler equations with residual smoothing, AIAA Journal, 33 (1995),
1008–1016.

18

